Table 3 Hyper-parameters of different models in CP-EGBM optimized by mPSO for all the datasets.

From: An efficient churn prediction model using gradient boosting machine and metaheuristic optimization

Model

Function

DS 1

DS 2

DS 3

DS 4

DS 5

DS 6

DS 7

SVMRBF

Regularization (\(\mathrm{C}\))

100

156

50

65

25

120

87

Kernel coefficient (\(\gamma\))

0.213

0.302

0.030

0.001

0.003

0.203

0.137

GBM

Number of estimators

315

503

223

418

438

250

305

Learning rate

0.093

0.103

0.132

0.312

0.034

0.001

0.003

Max. depth of DTs

5

5

4

6

6

7

6

Min. samples for split

5

8

6

10

7

8

9

Max. features

8

12

25

40

8

8

6

Sub-sample

1

0.82

0.90

0.95

0.83

0.97

0.83