Table 4 Performance evaluation of the GBM alone on all the datasets.
From: An efficient churn prediction model using gradient boosting machine and metaheuristic optimization
Dataset | AC | R | F | AUC |
|---|---|---|---|---|
DS 1 | 0.9401 | 0.7931 | 0.8439 | 0.8246 |
DS 2 | 0.8677 | 0.8514 | 0.8200 | 0.8062 |
DS 3 | 0.6737 | 0.6528 | 0.6813 | 0.7062 |
DS 4 | 0.5631 | 0.6063 | 0.5902 | 0.6160 |
DS 5 | 0.9352 | 0.7825 | 0.8413 | 0.8187 |
DS 6 | 0.9520 | 0.8747 | 0.8672 | 0.8774 |
DS 7 | 0.9520 | 0.7747 | 0.8150 | 0.8274 |