Table 2 The values of \({\alpha }_{m}^{\gamma }\) and \({\alpha }_{m}^{\varphi }\) (the location of maximum in the \({\gamma }_{norm}\left(\alpha \right)\)-\(\alpha\) and \({\varphi }_{norm}\left(\alpha \right)\)-\(\alpha\) curves, respectively) are extracted from Figs. 5 and 6, respectively. The value of q is equal to \({\alpha }_{m}^{\gamma }/(1-{\alpha }_{m}^{\gamma })\).
Sample code | \(\beta\)(K/min) | \({\alpha }_{m}^{\gamma }\) | \({\alpha }_{m}^{\varphi }\) | q |
|---|---|---|---|---|
S0 | 10 | 0.536 | 0.57 | 1.157 |
15 | 0.423 | 0.57 | 0.733 | |
20 | 0.391 | 0.41 | 0.643 | |
Mean | 0.450 ± 0.06 | 0.516 ± 0.07 | 0.844 ± 0.22 | |
S1 | 10 | 0.488 | 0.51 | 0.955 |
15 | 0.299 | 0.29 | 0.428 | |
20 | 0.464 | 0.52 | 0.866 | |
Mean | 0.417 ± 0.08 | 0.440 ± 0.10 | 0.750 ± 0.23 | |
S2 | 10 | 0.439 | 0.40 | 0.783 |
15 | 0.258 | 0.20 | 0.348 | |
20 | 0.390 | 0.37 | 0.639 | |
Mean | 0.362 ± 0.07 | 0.323 ± 0.08 | 0.590 ± 0.18 | |
S3 | 10 | 0.368 | 0.36 | 0.583 |
15 | 0.364 | 0.37 | 0.574 | |
20 | 0.361 | 0.34 | 0.565 | |
Mean | 0.364 ± 0.002 | 0.356 ± 0.01 | 0.574 ± 0.007 |