Table 1 Explanation of system’s feature.

From: Novel insights for a nonlinear deterministic-stochastic class of fractional-order Lassa fever model with varying kernels

Symbols

Explanation

Values

\(\mu\)

Percentage of people who develop to \({\textbf{Q}}_{{\textbf{h}}{\textbf{a}}}\)

Nil

\(\delta\)

Mortality from infection for people

Day\(^{-1}\)

\(\Phi _{{\textbf{v}}}\)

The greatest infection transmission rate

Virus

\(\Lambda _{1}\)

Individuals recruiting quantity

Human/day

\(\Lambda _{2}\)

Rodents recruiting quantity

Rodents/day

\(\vartheta _{1}\)

Individuals natural mortality rate

Day\(^{-1}\)

\(\vartheta _{2}\)

Rodents natural mortality rate

Day\(^{-1}\)

\(\phi _{1}\)

\({\textbf{Q}}_{{\textbf{h}}{\textbf{a}}}\) rate of recuperation

Day\(^{-1}\)

\(\phi _{2}\)

\({\textbf{Q}}_{{\textbf{h}}{\textbf{s}}}\) rate of recuperation

Day\(^{-1}\)

\(\upsilon\)

Rationale for rodent mortality resulting from human intake

Day\(^{-1}\)

\(\xi _{2}\)

Rate of infection deterioration in \(V_{{\textbf{s}}}\)

Day\(^{-1}\)

\(\xi _{3}\)

The speed of infection development from \(V_{{\textbf{s}}}\) to \(V_{{\textbf{a}}}\)

Day\(^{-1}\)

\(\beta _{1}\)

The speed at which \({\textbf{Q}}_{{\textbf{h}}{\textbf{a}}}\) releases infection in \({\textbf{G}}_{{\textbf{s}}}\)

Infection/individual \(\times\)day\(^{-1}\)

\(\beta _{2}\)

The speed at which \({\textbf{Q}}_{{\textbf{h}}{\textbf{s}}}\) releases infection in \({\textbf{G}}_{{\textbf{s}}}\)

Infection/individual\(\times\)day\(^{-1}\)

\(\beta _{3}\)

The speed at which \({\textbf{Q}}_{{\textbf{r}}}\) releases infection in \({\textbf{G}}_{{\textbf{s}}}\)

Infection/individual\(\times\)day\(^{-1}\)

\(\alpha _{1}\)

Individuals’ rate of switching from \({\textbf{P}}_{{\textbf{h}}}\) to \({\textbf{Q}}_{{\textbf{h}}{\textbf{a}}}\) and \({\textbf{Q}}_{{\textbf{h}}{\textbf{s}}}\)

Day\(^{-1}\)

\(\alpha _{2}\)

Rodents’ rate of switching from \({\textbf{P}}_ {{\textbf{r}}}\) to \({\textbf{Q}}_{{\textbf{r}}}\)

Day\(^{-1}\)

\(\gamma _{{\textbf{r}}}\)

Rate for interaction among \({\textbf{X}}_{{\textbf{r}}}, {\textbf{Q}}_{{\textbf{r}}}\) and \({\textbf{G}}_{{\textbf{s}}}\)

Day\(^{-1}\)

\(\gamma _{{\textbf{h}}}\)

Rate for interaction among \({\textbf{X}}_{{\textbf{h}}}, {\textbf{Q}}_{{\textbf{h}}{\textbf{a}}}, {\textbf{Q}}_{{\textbf{h}} {\textbf{s}}}, {\textbf{Q}}_{{\textbf{r}}}, {\textbf{G}}_{{\textbf{a}}}\) and \({\textbf{G}}_{{\textbf{s}}}\)

Day\(^{-1}\)

\(\rho _{1}\)

An altered factor

Nil

\(\rho _{2}\)

An altered factor

Nil

\(\rho _{3}\)

An altered factor

Nil

\(\rho _{4}\)

An altered factor

Nil