Table 3 Performance of model fusion with different combinations in SkinFLNet.

From: Deep convolutional neural network with fusion strategy for skin cancer recognition: model development and validation

 

WP

WR

WF

WS

WSP

InceptionResNetV2 + InceptionV3

0.85

0.82

0.82

0.82

0.93

InceptionResNetV2 + ResNet50

0.85

0.82

0.82

0.82

0.93

InceptionResNetV2 + VGG16

0.82

0.80

0.80

0.80

0.91

InceptionResNetV2 + VGG19

0.84

0.79

0.79

0.79

0.93

InceptionResNetV2 + MobileNet

0.84

0.83

0.83

0.83

0.93

InceptionResNetV2 + MobileNetV2

0.84

0.80

0.80

0.80

0.93

InceptionV3 + Res50

0.85

0.82

0.82

0.82

0.93

InceptionV3 + VGG16

0.84

0.82

0.82

0.82

0.93

InceptionV3 + VGG19

0.85

0.79

0.79

0.79

0.94

InceptionV3 + MobileNet

0.84

0.81

0.81

0.81

0.93

InceptionV3 + MobileNetV2

0.85

0.80

0.80

0.80

0.93

ResNet50 + VGG16

0.83

0.81

0.81

0.81

0.93

ResNet50 + VGG19

0.86

0.81

0.81

0.81

0.94

ResNet50 + MobileNet

0.84

0.81

0.81

0.81

0.93

ResNet50 + MobileNetV2

0.86

0.82

0.82

0.82

0.93

VGG16 + VGG19

0.83

0.77

0.77

0.77

0.94

VGG16 + MobileNet

0.84

0.80

0.80

0.80

0.93

VGG16 + MobileNetV2

0.84

0.80

0.80

0.80

0.93

VGG19 + MobileNet

0.85

0.79

0.79

0.79

0.94

VGG19 + MobileNetV2

0.85

0.78

0.78

0.78

0.94

MobileNet + MobileNetV2

0.85

0.78

0.78

0.78

0.94

  1. WP weight precision, WR weight recall, WF weight F-score, WS weight sensitivity, WSP weight specificity.
  2. Significant values are in bold.