Table 3 List of operators implemented for each type of n-dimensional vector, quaternions, octonions, sedenions, and complex numbers.
From: A new advance on dimensional-aware scalar, vector and matrix operations in C++
Operator | Operation | Note |
|---|---|---|
u + v | \((u_1+v_1, u_2+v_2, \ldots , u_n+v_n)\) | |
u - v | \((u_1-v_1, u_2-v_2, \ldots , u_n-v_n)\) | |
u * v | (Hamilton multiplication) | \(\dagger \) |
v * k | \((v_1\,k,v_2\,k, \ldots , v_n\,k)\) | |
k * v | \((k\,v_1,k\,v_2, \ldots , k\,v_n)\) | |
u / v | (Hamilton division) | \(\dagger \) |
v / k | \((v_1/k, v_2/k, \ldots , v_n/k )\) | |
u > v | \(u_1^2 + u_2^2 + \ldots + u_n^2 > v_1^2 + v_2^2 + \ldots + v_n^2 \) | |
u < v | \(u_1^2 + u_2^2 + \ldots + u_n^2 < v_1^2 + v_2^2 + \ldots + v_n^2 \) | |
u >= v | \(u_1^2 + u_2^2 + \ldots + u_n^2 \ge v_1^2 + v_2^2 + \ldots + v_n^2 \) | |
u <= v | \(u_1^2 + u_2^2 + \ldots + u_n^2 \le v_1^2 + v_2^2 + \ldots + v_n^2 \) | |
u == v | \(u_1=v_1 \text { and } u_2=v_2 \; \ldots \text { and } u_n=v_n\) | |
u != v | \(u_1 \ne v_1 \text { or } u_2 \ne v_2 \;\ldots \text { or } u_n \ne v_n\) |