Table 3 Description of unimodal and multimodal benchmark functions.

From: A modified particle swarm optimization algorithm for a vehicle scheduling problem with soft time windows

 

Func

Name

Function’s expressions

Search range

\(f_{min}\)

D

Unimodal functions

F1

Sphere Problem

\( f_1=\sum _{i=1}^n{ x_i ^2 } \)

\([-100,100]^n\)

0

50

F2

Schwefel’s Problem 2.22

\( f_2=\sum _{i=1}^n{\left| x_i \right| }+\prod _{i=1}^n{\left| x_i \right| } \)

\([-10,10]^n\)

0

50

F3

Schwefel’s Problem 1.2

\( f_3=\sum _{i=1}^n{ \left( \sum _{j=1}^i{ x_j }\right) ^2} \)

\([-100,100]^n\)

0

50

F4

Schwefel’s Problem 2.21

\( f_4=\max \left\{ \left| x_i \right| ,1\le i\le n \right\} \)

\([-100,100]^n\)

0

50

F5

Rosenbrock ’s Problem

\( f_{5}=\sum _{i=1}^{n-1}\biggl [100\biggl (x_{i+1}-x_{i}^{2}\biggr )^{2}+\biggl (x_{i}-1\biggr )^{2}\biggr ]\)

\([-30,30]^n\)

0

50

F6

Step Problem

\( f_{6}=\sum _{i=1}^{n}{\big (}{\big [}x_{i}+0.5{\big ]}{\big )}^{2} \)

\([-100,100]^n\)

0

50

F7

Quartic Noise

\(f_3=\sum _{i=1}^n{ix_{i}^{4}}+random\left[ 0.1 \right) \)

\([-1.28,1.28]^n\)

0

50

Multimodal functions

F8

Rastrigin

\( f_8=\sum _{i=1}^n{\left[ x_{i}^{2}-10\cos \left( 2\pi x_i \right) +10 \right] } \)

\([-5.12,5.12]^n\)

0

50

F9

Ackley

\( f_{9}=20+e-20\exp \left( -0.2\sqrt{\frac{1}{n}\sum _{i= 1}^{n}x_i^2}\right) -\exp \left( \frac{1}{n}\sum _{i=1}^{n}\cos \left( 2\pi x_i\right) \right) \)

\([-32,32]^n\)

0

50

F10

Griewank

\( f_{10}={\frac{1}{4000}}\sum _{i=1}^{n}x_{i}^{2}-\prod _{i=1}^{n}\cos \left( {\frac{x_{i}}{\sqrt{i}}}\right) +1 \)

\([-600,600]^n\)

0

50

F11

Penalized’s Function

\( f_{11}= \frac{\pi }{n}\bigg \{10{\text {sin}}\big (\pi x_{i}\big )+\sum _{i=1}^{n-}\big (x_{i}-1\big )^{2}\bigg [1+10{\text {sin}}^{2}\big (\pi x_{i+i}\big )\bigg ]+\big (x_{n}-1\big )^{2}\bigg \} +\sum _{i=1}^{n}u\big (x_{i},10,100,4\big ) \)

\([-50,50]\)

0

50

F12

Penalized’s Function

\( f_{12}\left( x \right) = \frac{1}{10} \sin ^2\left( 3\pi x_1 \right) + \frac{1}{10} \sum _{k=1}^n{\left( x_k-1 \right) }^2\left[ 1+\sin ^2\left( 3\pi x_l+1 \right) \right] + \sum _{i=1}^n{u}\left( x_i,5,100,4 \right) + \frac{1}{10} \left( x_n-1 \right) ^2\left[ 1+\sin ^2\left( 2\pi x_n \right) \right] \)

\([-50,50]\)

0

50