Table 1 Improved network parameters for each layer.

From: Research on the construction of weaponry indicator system and intelligent evaluation methods

Number of network layers

Network type

Convolution kernel size/pixel

Output size/pixels

1

Convolutional layer 1

\(7 \times 7\)

\(72 \times 72 \times 16\)

2

Convolutional layer 2

\(7 \times 7\)

\(66 \times 66 \times 32\)

3

Convolutional layer 3

\(7 \times 7\)

\(60 \times 60 \times 32\)

4

Pooling layer 1

\(2 \times 2\)

\(30 \times 30 \times 32\)

5

Convolutional layer 4

\(3 \times 3\)

\(28 \times 28 \times 128\)

6

Convolutional layer 5

\(3 \times 3\)

\(26 \times 26 \times 128\)

7

Convolutional layer 6

\(3 \times 3\)

\(24 \times 24 \times 128\)

8

Pooling layer 2

\(2 \times 2\)

\(12 \times 12 \times 128\)

9

Residual blocks 1

\(3 \times 3\)

\(3 \times 3\)

\(12 \times 12 \times 128\)

10

Convolutional layer 7

\(3 \times 3\)

\(10 \times 10 \times 256\)

11

Convolutional layer 8

\(3 \times 3\)

\(8 \times 8 \times 256\)

12

Convolutional layer 9

\(3 \times 3\)

\(6 \times 6 \times 256\)

13

Pooling layer 3

\(2 \times 2\)

\(3 \times 3 \times 256\)

14

Residual blocks 2

\(3 \times 3\)

\(3 \times 3\)

\(3 \times 3 \times 256\)

15

Fully connected layer

\(1 \times 1\)

\(1 \times 1 \times 2304\)

16

Fully connected layer

\(1 \times 1\)

\(1 \times 1 \times 1024\)