Table 6 Improved recognition results after data fusion.

From: Research on the construction of weaponry indicator system and intelligent evaluation methods

Neural network

Credibility \(\theta_{i}\)

Evidence

(\(p_{i} (F_{1}\)), \(p_{i} (F_{2}\)), \(p_{i} (F_{3}\)), \(p_{i} (F_{4}\)), \(p_{i} (F_{5}\)), \(p_{i} ({\Theta }\))

\(B_{1}\)

0.8621

\(U_{1}\)

(0.0000, 0.6614, 0.1976, 0.0524, 0.0059, 0.0827)

\(B_{2}\)

0.6814

\(U_{1}\)

(0.1825, 0.1923, 0.0000, 0.3183, 0.0964, 0.2105)

\(B_{3}\)

0.7235

\(U_{1}\)

(0.1461, 0.4029, 0.2436, 0.0000, 0.0318, 0.1756)

\(B_{4}\)

0.7463

\(U_{1}\)

(0.1721, 0.4417, 0.0108, 0.0000, 0.0928, 0.2826)

\(B_{5}\)

0.4922

\(U_{1}\)

(0.1825, 0.2923, 0.1176, 0.2571, 0.0000, 0.1505)

\(B_{6}\)

0.8142

\({\text{U}}_{1}\)

(0.0000, 0.3761, 0.0814, 0.0569, 0.1781, 0.3075)

\(B_{7}\)

0.6619

\(U_{1}\)

(0.1112, 0.4009, 0.0926, 0.1080, 0.0000, 0.2873)

\(B_{8}\)

0.7867

\(U_{1}\)

(0.1722, 0.0990, 0.0000, 0.4343, 0.0618, 0.2327)

\(B_{9}\)

0.9021

\(U_{1}\)

(0.3841, 0.0000, 0.1015, 0.0913, 0.2614, 0.1617)