Table 1 The threshold time \(T_{\textrm th}\) for selected constraints and the corresponding fidelity \({\mathbb {F}}\) at the total evolution time \(T=T_{\textrm th}\) using QOC and using adiabatic ramping (adia.).

From: State preparation in a Jaynes-Cummings lattice with quantum optimal control

Constraints

\(T_{\textrm th}\)

\({\mathbb {F}}\) (QOC)

\({\mathbb {F}}\) (adia.)

\(J_{\textrm max}=1, g_{\textrm max}=1\)

\(5.27\pi\)    

  0.9944  

0.6610

\(J_{\textrm max}=1, g_{\textrm max}=2\)

\(3.30\pi\)

0.9932

0.4213

\(J_{\textrm max}=1, g_{\textrm max}=4\)

\(2.23\pi\)

0.9963

0.3995

\(J_{\textrm max}=2, g_{\textrm max}=1\)

\(5.27\pi\)

0.9944

0.6610

\(J_{\textrm max}=2, g_{\textrm max}=2\)

\(3.28\pi\)

0.9927

0.4223

\(J_{\textrm max}=2, g_{\textrm max}=4\)

\(1.96\pi\)

0.9954

0.3276

\(J_{\textrm max}=4, g_{\textrm max}=1\)

\(5.28\pi\)

0.9925

0.6626

\(J_{\textrm max}=4, g_{\textrm max}=2\)

\(3.28\pi\)

0.9927

0.4223

\(J_{\textrm max}=4, g_{\textrm max}=4\)

\(1.90\pi\)

0.9904

0.3001