Table 1 Performance results of HEA classifier based on 12 distinct ML models.

From: Design of high bulk moduli high entropy alloys using machine learning

Model

Accuracy

Precision

Recall

F1_score

AUC_ROC

Train

Test

Train

Test

Train

Test

Train

Test

Train

Test

LR

0.71

0.69

0.73

0.66

0.56

0.54

0.63

0.59

0.70

0.67

SVC

0.87

0.78

0.87

0.76

0.83

0.70

0.85

0.73

0.87

0.77

NuSVC

0.86

0.78

0.87

0.76

0.82

0.69

0.84

0.72

0.86

0.76

SGD

0.70

0.66

0.66

0.58

0.69

0.65

0.67

0.61

0.70

0.66

KNC

0.80

0.76

0.81

0.74

0.73

0.67

0.77

0.70

0.79

0.75

GBC

0.99

0.77

0.99

0.73

0.98

0.71

0.99

0.72

0.99

0.76

AC

0.76

0.72

0.75

0.67

0.68

0.65

0.71

0.66

0.75

0.71

RFC

0.93

0.76

0.96

0.75

0.89

0.65

0.92

0.70

0.93

0.75

XGB

0.99

0.77

0.99

0.75

0.99

0.70

0.99

0.72

0.99

0.76

DTC

0.69

0.65

0.62

0.56

0.80

0.78

0.70

0.65

0.70

0.67

ETC

0.87

0.74

0.96

0.74

0.74

0.57

0.84

0.65

0.86

0.72

GNB

0.48

0.46

0.46

0.43

1.00

0.99

0.63

0.60

0.53

0.53