Table 2 Results for four classification model architectures on test images.

From: Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques

Performance metrics

Unfed

Fully fed

Semi-gravid

Gravid

Avg. performance metrics

ResNet50

 Precision

100

96.08

100

91.84

96.98

 Recall

100

94.23

95.45

100

97.42

 F1-score

100

95.15

97.67

95.74

97.14

 Accuracy

100

94.23

95.45

100

97.44

MobileNetV2

 Precision

95.95

91.84

95.08

80.00

90.71

 Recall

100

86.54

87.88

88.89

90.83

 F1-score

97.93

89.11

91.34

84.21

90.65

 Accuracy

100

86.53

87.88

88.89

91.45

EfficientNet-B0

 Precision

97.26

96.00

95.24

83.33

92.96

 Recall

100

92.31

90.91

88.89

93.03

 F1-score

98.61

94.12

93.02

90.91

92.94

 Accuracy

100

92.31

90.91

88.89

93.59

ConvNeXtTiny

 Precision

94.20

92.31

89.66

69.09

86.31

 Recall

91.55

92.31

78.79

84.44

86.77

 F1-score

92.86

92.31

83.87

76.00

86.26

 Accuracy

91.55

92.31

78.78

84.44

86.75