Table 2 Results for four classification model architectures on test images.
Performance metrics | Unfed | Fully fed | Semi-gravid | Gravid | Avg. performance metrics |
|---|---|---|---|---|---|
ResNet50 | |||||
Precision | 100 | 96.08 | 100 | 91.84 | 96.98 |
Recall | 100 | 94.23 | 95.45 | 100 | 97.42 |
F1-score | 100 | 95.15 | 97.67 | 95.74 | 97.14 |
Accuracy | 100 | 94.23 | 95.45 | 100 | 97.44 |
MobileNetV2 | |||||
|---|---|---|---|---|---|
Precision | 95.95 | 91.84 | 95.08 | 80.00 | 90.71 |
Recall | 100 | 86.54 | 87.88 | 88.89 | 90.83 |
F1-score | 97.93 | 89.11 | 91.34 | 84.21 | 90.65 |
Accuracy | 100 | 86.53 | 87.88 | 88.89 | 91.45 |
EfficientNet-B0 | |||||
|---|---|---|---|---|---|
Precision | 97.26 | 96.00 | 95.24 | 83.33 | 92.96 |
Recall | 100 | 92.31 | 90.91 | 88.89 | 93.03 |
F1-score | 98.61 | 94.12 | 93.02 | 90.91 | 92.94 |
Accuracy | 100 | 92.31 | 90.91 | 88.89 | 93.59 |
ConvNeXtTiny | |||||
|---|---|---|---|---|---|
Precision | 94.20 | 92.31 | 89.66 | 69.09 | 86.31 |
Recall | 91.55 | 92.31 | 78.79 | 84.44 | 86.77 |
F1-score | 92.86 | 92.31 | 83.87 | 76.00 | 86.26 |
Accuracy | 91.55 | 92.31 | 78.78 | 84.44 | 86.75 |