Table 3 Evaluation metrics table to classify breathing sounds of 23 patients with a tracheostomy tube: normal and abnormal sounds.

From: Breathing sounds analysis system for early detection of airway problems in patients with a tracheostomy tube

 

Input

Name of the classifier

Accuracy

Sensitivity

Specificity

Positive predictive value

Negative predictive value

Area under curve

CNN

Spectrogram

AlexNet

0.9140

0.9401

0.8690

0.9253

0.8936

0.9586

VGG_16

0.9090

0.9341

0.8655

0.9231

0.8838

0.9527

ResNet_50

0.9330

0.9381

0.9241

0.9553

0.8963

0.9650

Inception_v3

0.9317

0.9261

0.9414

0.9647

0.8806

0.9608

MobileNet

0.9241

0.9441

0.8897

0.9366

0.9021

0.9549

SVM

MFCC(20)

3rd polynomial

0.8306

0.8922

0.7241

0.8482

0.7955

0.9248

RBF

0.9153

0.9142

0.9172

0.9502

0.8608

0.9681

MFCC(40)

3rd polynomial

0.8609

0.8703

0.8448

0.9064

0.7903

0.9257

RBF

0.9102

0.9142

0.9034

0.9424

0.8590

0.9598

kNN

MFCC(20)

k = 3

0.8900

0.9142

0.8483

0.9124

0.8512

0.9098

k = 5

0.8786

0.8882

0.8621

0.9175

0.8170

0.9159

k = 7

0.8824

0.8842

0.8793

0.9268

0.8147

0.9369

MFCC(40)

k = 3

0.9102

0.9341

0.8690

0.9249

0.8842

0.9102

k = 5

0.8976

0.9102

0.8759

0.9268

0.8495

0.9249

k = 7

0.8913

0.9042

0.8690

0.9226

0.8400

0.9406

  1. CNN convolution neural network; SVM support vector machine; kNN k-nearest neighbor; RBF radial bias function.