Table 2 Random Forest and LSTM performances for trend forecasting: Models were built on Google Trends alone (a, c) and the combination of Google Trends and Twitter (b, d).
From: Development of an early alert model for pandemic situations in Germany
Model | Metrics | Up-trend | Down-trend | Macro avg. | Weighted avg. |
|---|---|---|---|---|---|
(a) Google Trends-Confirmed cases | |||||
Random forest | Sensitivity | 1 | 0.33 | 0.44 | 0.72 |
Precision | 0.71 | 1 | 0.57 | 0.64 | |
F1 score | 0.83 | 0.5 | 0.44 | 0.64 | |
LSTM | Sensitivity | 1 | 0.5 | 0.72 | 0.86 |
Precision | 0.92 | 1 | 0.83 | 0.88 | |
F1 score | 0.96 | 0.67 | 0.75 | 0.85 | |
(b) Combined-Confirmed cases | |||||
Random forest | Sensitivity | 0.92 | 1 | 0.64 | 0.78 |
Precision | 1 | 0.43 | 0.48 | 0.74 | |
F1 score | 0.96 | 0.6 | 0.52 | 0.74 | |
LSTM | Sensitivity | 0.96 | 0.83 | 0.93 | 0.94 |
Precision | 1 | 1 | 0.92 | 0.96 | |
F1 score | 0.98 | 0.91 | 0.91 | 0.95 | |
(c) Google trends-hospitalization | |||||
Random forest | Sensitivity | 1 | 0.75 | 0.58 | 0.75 |
Precision | 0.67 | 1 | 0.56 | 0.67 | |
F1 score | 0.8 | 0.86 | 0.55 | 0.69 | |
LSTM | Sensitivity | 0.89 | 0.58 | 0.82 | 0.81 |
Precision | 1 | 1 | 0.82 | 0.91 | |
F1 score | 0.94 | 0.74 | 0.77 | 0.82 | |
(d) Combined-hospitalization | |||||
Random forest | Sensitivity | 1 | 1 | 0.67 | 0.83 |
Precision | 0.9 | 0.75 | 0.55 | 0.70 | |
F1 score | 0.95 | 0.86 | 0.60 | 0.76 | |
LSTM | Sensitivity | 1 | 0.92 | 0.92 | 0.94 |
Precision | 0.95 | 1 | 0.93 | 0.95 | |
F1 score | 0.97 | 0.96 | 0.92 | 0.94 | |