Table 2 Random Forest and LSTM performances for trend forecasting: Models were built on Google Trends alone (a, c) and the combination of Google Trends and Twitter (b, d).

From: Development of an early alert model for pandemic situations in Germany

Model

Metrics

Up-trend

Down-trend

Macro avg.

Weighted avg.

(a) Google Trends-Confirmed cases

 Random forest

Sensitivity

1

0.33

0.44

0.72

Precision

0.71

1

0.57

0.64

F1 score

0.83

0.5

0.44

0.64

 LSTM

Sensitivity

1

0.5

0.72

0.86

Precision

0.92

1

0.83

0.88

F1 score

0.96

0.67

0.75

0.85

(b) Combined-Confirmed cases

 Random forest

Sensitivity

0.92

1

0.64

0.78

Precision

1

0.43

0.48

0.74

F1 score

0.96

0.6

0.52

0.74

 LSTM

Sensitivity

0.96

0.83

0.93

0.94

Precision

1

1

0.92

0.96

F1 score

0.98

0.91

0.91

0.95

(c) Google trends-hospitalization

 Random forest

Sensitivity

1

0.75

0.58

0.75

Precision

0.67

1

0.56

0.67

F1 score

0.8

0.86

0.55

0.69

 LSTM

Sensitivity

0.89

0.58

0.82

0.81

Precision

1

1

0.82

0.91

F1 score

0.94

0.74

0.77

0.82

(d) Combined-hospitalization

 Random forest

Sensitivity

1

1

0.67

0.83

Precision

0.9

0.75

0.55

0.70

F1 score

0.95

0.86

0.60

0.76

 LSTM

Sensitivity

1

0.92

0.92

0.94

Precision

0.95

1

0.93

0.95

F1 score

0.97

0.96

0.92

0.94

  1. All models were tested during the out-of-sample period from end of March to June 2022.