Table 5 Clustering accuracy score of K-means, FEKM, MCKM, MCQ and FLCS using Rand Index.
From: An efficient framework for obtaining the initial cluster centers
Data sets | K-means | FEKM | MCKM | MFQ | FLCS |
|---|---|---|---|---|---|
Iris | 0.848 | 0.867 | 0.859 | 0.879 | 0.879 |
Balance | 0.561 | 0.602 | 0.566 | 0.674 | 0.674 |
Abalone | 0.491 | 0.523 | 0.596 | 0.637 | 0.637 |
Seed | 0.756 | 0.809 | 0.901 | 0.821 | 0.821 |
TAE | 0.543 | 0.572 | 0.543 | 0.601 | 0.601 |
Wine | 0.691 | 0.834 | 0.718 | 0.691 | 0.691 |
Glass | 0.581 | 0.593 | 0.704 | 0.611 | 0.611 |
Mushroom | 0.591 | 0.641 | 0.572 | 0.587 | 0.587 |
Adult | 0.528 | 0.427 | 0.528 | 0.539 | 0.539 |
Haberman | 0.499 | 0.471 | 0.456 | 0.501 | 0.501 |