Table 22 Wilcoxon signed-rank sum test for IEEE 118 bus test system.

From: Application of modified artificial hummingbird algorithm in optimal power flow and generation capacity in power networks considering renewable energy sources

Cases

mAHA vs. AHA

mAHA vs. HHO

mAHA vs. RUN

mAHA vs. SCA

mAHA vs. SMA

mAHA vs. TSA

mAHA vs. WOA

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

\(\mathrm{p}\)-value

\({\mathrm{H}}_{0}\)

Case 1

9.8524e−07

0

8.8966e−07

0

.8966e−07

0

8.8966e−07

0

3.2293e−05

0

8.8966e−07

0

8.8966e−07

0

Case 2

4.5554e−05

0

8.8966e−07

0

0.1760

1

8.8966e−07

0

0.0347

0

8.8966e−07

0

8.8966e−07

0

Case 3

4.7702e−06

0

8.8966e−07

0

0.4005

1

8.8966e−07

0

0.0186

0

8.8966e−07

0

8.8966e−07

0

Case 4

1.2068e−06

0

8.8966e−07

0

8.8966e−07

0

8.8966e−07

0

5.7674e−06

0

8.8966e−07

0

8.8966e−07

0