Table 2 Comparison between the best design solutions identified with the competing algorithms.

From: Non-myopic multipoint multifidelity Bayesian framework for multidisciplinary design

Method

\(f^*({\textbf {x}}^*)\)

\({\textbf {x}}^* = [ F_V^*, F_N^*, s_{TPS}^* ]\)

\(m^*_{TPS}\)

\(T^*_{TPS}\)

\(m^*_{P}\)

EGO

0.8999 (10.01 %)

\({\textbf {x}}^* = [ 33.63 \; kN, 0.969 \; kN, 0.0396 \; m ]\)

\(476.6 \;kg\)

\(1320 \; K\)

\(74.61 \; kg\)

MFEI

0.8717 (12.83 %)

\({\textbf {x}}^* = [ 35.67 \; kN, 1.561 \; kN, 0.0341 \; m ]\)

\(410.35 \; kg\)

\(1326 \; K\)

\(80.06 \; kg\)

MFMES

0.8963 (10.37 %)

\({\textbf {x}}^* = [ 35.97 \; kN, 2.046 \; kN, 0.0373 \; m ]\)

\(447.96 \; kg\)

\(1329 \; K\)

\(81.52 \; kg\)

MFPI

0.8921 (10.79 %)

\({\textbf {x}}^* = [ 35.40 \; kN, 0.691 \; kN, 0.0377 \; m ]\)

\(453.4 \; kg\)

\(1322 \; K\)

\(77.97 \; kg\)

NM3-BO

0.8202 (17.98 %)

\({\textbf {x}}^* = [ 29.53 \; kN, 0.807 \; kN, 0.0304 \; m ]\)

\(365.17 \; kg\)

\(1310 \; K\)

\(65.45 \; kg\)