Table 2 Parameter estimates and their mean squared errors.

From: Some developments on seasonal INAR processes with application to influenza data

n

\(\hat{\lambda }_{ YW}\)

\(\hat{\alpha }_{ YW}\)

\(\hat{\delta }_{{ YW}}\)

\(\hat{\lambda }_{{ CLS}}\)

\(\hat{\alpha }_{{ CLS}}\)

\(\hat{\delta }_{ CLS}\)

\(\hat{\lambda }_{{ CML}}\)

\(\hat{\alpha }_{{ CML}}\)

\(\hat{\delta }_{{ CML}}\)

\(\lambda =0.3\), \(\alpha =0.5\), \(\delta =0.7\)

100

0.2739

0.6347

0.6307

0.2747

0.5749

0.6324

0.2952

0.5234

0.6919

0.0157

0.0799

0.0205

0.0133

0.0159

0.0259

0.0081

0.0164

0.0054

300

0.2954

0.5363

0.6827

0.2947

0.5504

0.6641

0.2963

0.5073

0.6956

0.0046

0.0083

0.0042

0.0046

0.0072

0.0077

0.0022

0.0036

0.0014

500

0.2953

0.5229

0.6868

0.2954

0.5396

0.6721

0.2993

0.5088

0.6963

0.0029

0.0043

0.0026

0.0026

0.0046

0.0038

0.0013

0.0022

0.0009

1000

0.2966

0.5142

0.6919

0.2970

0.5303

0.6785

0.3005

0.5025

0.6998

0.0013

0.0021

0.0012

0.0012

0.0029

0.0019

0.0006

0.0011

0.0004

\(\lambda =0.5\), \(\alpha =1\), \(\delta =0.5\)

 100

0.4319

1.1772

0.3866

0.4656

1.0993

0.4106

0.4838

1.0845

0.4713

0.0198

0.4565

0.0848

0.0177

0.0358

0.0545

0.0138

0.0986

0.0190

 300

0.4756

1.0852

0.4525

0.4864

1.0718

0.4472

0.4912

1.0121

0.4920

0.0054

0.0560

0.0168

0.0050

0.0160

0.0147

0.0040

0.0209

0.0054

 500

0.4865

1.0564

0.4689

0.4905

1.0668

0.4505

0.4954

1.0179

0.4905

0.0032

0.0282

0.0097

0.0030

0.0114

0.0099

0.0022

0.0115

0.0028

 1000

0.4928

1.0226

0.4867

0.4930

1.0622

0.4576

0.4988

1.0087

0.4973

0.0015

0.0116

0.0043

0.0014

0.0089

0.0058

0.0011

0.0062

0.0014

\(\lambda =0.6\), \(\alpha =1.5\), \(\delta =-0.5\)

 100

0.5188

1.4169

\(-0.4893\)

0.5621

1.4184

\(-0.4468\)

0.5688

1.5475

\(-0.5601\)

0.0172

0.9482

0.5433

0.0150

0.0833

0.0372

0.0124

0.1645

0.0796

 300

0.5784

1.5685

\(-0.5892\)

0.5838

1.4341

\(-0.4443\)

0.5919

1.5326

\(-0.5312\)

0.0043

0.4783

0.2972

0.0039

0.0382

0.0268

0.0028

0.0712

0.0354

 500

0.5851

1.5689

\(-0.5748\)

0.5917

1.4460

\(-0.4464\)

0.5943

1.5242

\(-0.5266\)

0.0026

0.2143

0.1535

0.0023

0.0261

0.0188

0.0017

0.0478

0.0239

 1000

0.5936

1.5606

\(-0.5558\)

0.5961

1.4491

\(-0.4494\)

0.5971

1.5090

\(-0.5107\)

0.0011

0.0649

0.0558

0.0011

0.0130

0.0130

0.0010

0.0225

0.0109

\(\lambda =0.7\), \(\alpha =2\), \(\delta =-1\)

 100

0.5804

1.4330

\(-0.5686\)

0.6590

1.8734

\(-0.9271\)

0.6653

1.9439

\(-0.9821\)

0.0240

1.8765

1.2004

0.0153

0.1675

0.0744

0.0122

0.3010

0.1417

 300

0.6713

1.7131

\(-0.8222\)

0.6858

1.8965

\(-0.9120\)

0.6891

2.0113

\(-1.0204\)

0.0045

1.7318

1.0939

0.0038

0.0983

0.0559

0.0025

0.1510

0.0841

 500

0.6848

1.8997

\(-0.9649\)

0.6906

1.9002

\(-0.9101\)

0.6936

2.0205

\(-1.0274\)

0.0022

1.2074

0.8342

0.0022

0.0732

0.0491

0.0015

0.1214

0.0667

 1000

0.6930

2.0364

\(-1.0658\)

0.6932

1.9088

\(-0.9172\)

0.6982

2.0339

\(-1.0286\)

0.0011

0.7614

0.5599

0.0010

0.0393

0.0289

0.0007

0.0678

0.0378