Table 1 Power for testing \(H_0:\beta ^{(1)}_{j}=\cdots =\beta ^{(G)}_{j}\) vs \(H_1:\) not \(H_0\) at \(\alpha =0.05\), where \(n_1,\ldots ,n_G\) are set as \(n_1=\cdots =n_G=m\).

From: Debiased inference for heterogeneous subpopulations in a high-dimensional logistic regression model

(m, p)

j

\(\min _{g}\beta ^{(g)}_j\)

\(\max _{g}\beta ^{(g)}_j\)

Methods

DFGL

DL

DL-E

DR-B

DL-B

DL-E-B

AR(1)

 (200, 80)

1

\(-0.6\)

0.6

0.93

0.84

0.54

0.00

0.00

0.00

2

\(-\,0.6\)

0.6

0.87

0.76

0.33

0.00

0.00

0.00

3

\(-\,0.4\)

0.6

0.62

0.44

0.21

0.00

0.00

0.00

4

\(-\,0.4\)

0.6

0.76

0.54

0.22

0.00

0.00

0.00

 (300, 120)

1

\(-\,0.6\)

0.6

1.00

0.97

0.78

0.00

0.00

0.00

2

\(-\,0.6\)

0.6

0.97

0.93

0.61

0.00

0.00

0.00

3

\(-\,0.4\)

0.6

0.90

0.75

0.44

0.00

0.00

0.00

4

\(-\,0.4\)

0.6

0.88

0.87

0.48

0.00

0.00

0.00

Block

 (200, 80)

1

\(-\,0.6\)

0.6

0.95

0.84

0.57

0.00

0.02

0.01

2

\(-\,0.6\)

0.6

0.82

0.60

0.38

0.00

0.00

0.00

3

\(-\,0.4\)

0.6

0.66

0.44

0.20

0.00

0.00

0.00

4

\(-\,0.4\)

0.6

0.79

0.63

0.31

0.00

0.00

0.00

 (300, 120)

1

\(-\,0.6\)

0.6

1.00

0.97

0.76

0.00

0.00

0.00

2

\(-\,0.6\)

0.6

0.99

0.91

0.61

0.00

0.00

0.00

3

\(-\,0.4\)

0.6

0.88

0.78

0.40

0.00

0.00

0.00

4

\(-\,0.4\)

0.6

0.97

0.91

0.57

0.00

0.01

0.00