Table 2 Mean classifier test and blind well assessment outcomes (using a 20-run average) for baseline classifiers based on Mean. F and Mean. K (Percentage-wise).

From: An ensemble-based machine learning solution for imbalanced multiclass dataset during lithology log generation

Method

Baseline classifier

Adaptation

\({\mathrm{Mean}.\mathrm{ F}}_{\mathrm{t}}\)

\({\mathrm{Mean}.\mathrm{ F}}_{\mathrm{b}}\)

\({\mathrm{Rank}}_{\mathrm{b}}\)

\({\mathrm{Mean}.\mathrm{K}}_{\mathrm{t}}\)

\({\mathrm{Mean}.\mathrm{K}}_{\mathrm{b}}\)

\({\mathrm{Rank}}_{\mathrm{b}}\)

Ad-hoc

SVM

Base

93.26

82.46

88.15

70.61

RF

92.72

81.88

87.49

69.96

XGBoost

90.62

78.74

84.97

67.54

DT

88.54

76.65

82.65

65.89

LR

84.38

71.84

77.86

60.85

SVM

Static-SMOTE

93.33

83.58

5

89.24

72.55

5

RF

92.58

82.75

6

88.43

71.69

6

XGBoost

89.98

81.42

8

85.68

69.14

8

DT

88.99

80.68

10

83.45

67.82

10

LR

85.04

76.11

13

78.24

62.74

13

ECOC

SVM

Std

93.87

85.30

90.03

75.03

RF

92.84

84.29

89.12

74.08

XGBoost

89.76

83.02

87.45

72.88

DT

87.65

81.45

85.94

70.86

LR

82.98

77.07

80.85

65.87

SVM

M-SMOTE

89.92

81.38

9

83.56

68.82

9

RF

88.97

80.24

11

81.75

67.03

11

XGBoost

86.43

77.54

12

78.54

64.72

12

DT

83.95

72.97

14

77.14

62.68

14

LR

80.87

71.95

15

72.56

57.21

15

SVM

CSL

94.71

86.87

1

91.37

78.04

1

RF

94.09

86.28

2

90.55

77.29

2

XGBoost

93.87

84.08

3

89.62

75.42

3

DT

93.74

83.67

4

89.48

74.14

4

LR

90.32

81.54

7

85.98

70.52

7

  1. The t-index signifies test grades, while the b-index denotes ratings from blind evaluations.