Table 4 Performance of segmentation CNNs (implemented using TL).

From: COVID-19 infection analysis framework using novel boosted CNNs and radiological images

Model

Region

DSC

Acc

IoU

BF

Global-Acc

Mean-Acc

Mean-IoU

Weighted-IoU

Mean-BF

Deeplabv3

Infected

95.35

98.76

98.03

97.71

99.23

99.15

98.40

98.48

97.19

Background

98.65

99.53

98.76

96.66

U-SegNet

Infected

95.20

98.41

97.52

97.46

98.93

98.81

98.10

98.25

96.94

Background

98.60

99.67

98.61

96.32

SegNet

Infected

95.10

98.29

97.70

97.41

99.10

98.95

98.09

98.22

96.82

Background

98.10

99.62

98.55

96.23

U-Net

Infected

94.90

98.74

97.62

98.19

99.22

99.06

98.06

98.15

96.63

Background

98.20

99.07

98.49

95.86

VGG-16

Infected

94.80

98.29

97.07

97.11

98.89

98.79

97.61

97.74

96.18

Background

97.90

99.23

98.24

95.29

FCN-8

Infected

94.70

98.29

97.04

97.08

98.87

98.76

97.59

97.71

96.16

Background

98.00

99.21

98.15

95.27