Table 2 The z components of the Wannier centers, \(\langle z \rangle {W_{n, {\textbf {R}}}}\), and occupation numbers, \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\), as well as summation of \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\) over the Wannier centers, \(\sum _{n=1}^{\mathbb {J}^{(\text {I})}=18}{\mathbbm {n}_{W_{n, {\textbf {R}}}}}\), taking the eighteen Wannier centers from \(n=1~\text {to}~\mathbb {J}^{(\text {I})}=18\) of class I into account for the NCS R3c (CS R\(\bar{3}\)c) hexagonal structure of LiOsO\(_3\).

From: Nonzero spontaneous electric polarization in metals: novel predictive methods and applications

n

\(\langle z \rangle {W_{n, {\textbf {R}}}}\)

\(\mathbbm {n}_{W_{n, {\textbf {R}}}}\)

n

\(\langle z \rangle {W_{n, {\textbf {R}}}}\)

\(\mathbbm {n}_{W_{n, {\textbf {R}}}}\)

1

6.25 (6.63)

1.09 (1.09)

10

12.96 (0.00)

1.09 (1.09)

2

6.25 (6.63)

1.09 (1.09)

11

12.96 (0.00)

1.09 (1.09)

3

6.26 (6.63)

0.82 (0.82)

12

12.96 (0.00)

0.82 (0.82)

4

1.78 (2.21)

1.09 (1.09)

13

8.49 (8.84)

1.09 (1.09)

5

1.78 (2.21)

1.09 (1.09)

14

8.49 (8.84)

1.09 (1.09)

6

1.79 (2.21)

0.82 (0.82)

15

8.49 (8.84)

0.82 (0.82)

7

10.72 (11.05)

1.09 (1.09)

16

4.02 (4.42)

1.09 (1.09)

8

10.72 (11.05)

1.09 (1.09)

17

4.02 (4.42)

1.09 (1.09)

9

10.73 (11.05)

0.82 (0.82)

18

4.02 (4.42)

0.82 (0.82)

\(\vdots\)

\(\vdots\)

\(\vdots\)

\(\sum _{n=1}^{18}{\mathbbm {n}_{W_{n, {\textbf {R}}}}}\)

 

18.00(18.00)