Table 2 The z components of the Wannier centers, \(\langle z \rangle {W_{n, {\textbf {R}}}}\), and occupation numbers, \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\), as well as summation of \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\) over the Wannier centers, \(\sum _{n=1}^{\mathbb {J}^{(\text {I})}=18}{\mathbbm {n}_{W_{n, {\textbf {R}}}}}\), taking the eighteen Wannier centers from \(n=1~\text {to}~\mathbb {J}^{(\text {I})}=18\) of class I into account for the NCS R3c (CS R\(\bar{3}\)c) hexagonal structure of LiOsO\(_3\).
From: Nonzero spontaneous electric polarization in metals: novel predictive methods and applications
n | \(\langle z \rangle {W_{n, {\textbf {R}}}}\) | \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\) | n | \(\langle z \rangle {W_{n, {\textbf {R}}}}\) | \(\mathbbm {n}_{W_{n, {\textbf {R}}}}\) |
|---|---|---|---|---|---|
1 | 6.25 (6.63) | 1.09 (1.09) | 10 | 12.96 (0.00) | 1.09 (1.09) |
2 | 6.25 (6.63) | 1.09 (1.09) | 11 | 12.96 (0.00) | 1.09 (1.09) |
3 | 6.26 (6.63) | 0.82 (0.82) | 12 | 12.96 (0.00) | 0.82 (0.82) |
4 | 1.78 (2.21) | 1.09 (1.09) | 13 | 8.49 (8.84) | 1.09 (1.09) |
5 | 1.78 (2.21) | 1.09 (1.09) | 14 | 8.49 (8.84) | 1.09 (1.09) |
6 | 1.79 (2.21) | 0.82 (0.82) | 15 | 8.49 (8.84) | 0.82 (0.82) |
7 | 10.72 (11.05) | 1.09 (1.09) | 16 | 4.02 (4.42) | 1.09 (1.09) |
8 | 10.72 (11.05) | 1.09 (1.09) | 17 | 4.02 (4.42) | 1.09 (1.09) |
9 | 10.73 (11.05) | 0.82 (0.82) | 18 | 4.02 (4.42) | 0.82 (0.82) |
\(\vdots\) | \(\vdots\) | \(\vdots\) | \(\sum _{n=1}^{18}{\mathbbm {n}_{W_{n, {\textbf {R}}}}}\) | Â | 18.00(18.00) |