Table 2 Deck two CNN model of ABCDEF feature extraction.
Layers | Descriptions | Activations |
|---|---|---|
convolutional2D_1 | Size of (3,3) -32 filters | ReLu |
convolutional2D_2 | Size of (3,3)- 64 filters | ReLu |
max_pooling2D_1 | (2,2) pool size | – |
convolutional2D_3 | Sze of (3,3)- 128 filters | ReLu |
max_pooling2d_2 | Pool size (2,2) | – |
convolutional2D_4 | Size of (3,3)- 256 filters | ReLu |
max_pooling2d_3 | Pool size (2,2) | |
flatten_Layer1 | – | – |
dense_Layer1 | 256 units | ReLu |
dense_Layer2 | 128 units | ReLu |
dense_Layer3 | 64 units | ReLu |
dense_Layer4 | 32 units | ReLu |
dense_Layer5 | 2 units | Sigmoid |