Table 2 Classification performance by the five DTI measures separately and all features together with three algorithms.

From: Brain multi-contrast, multi-atlas segmentation of diffusion tensor imaging and ensemble learning automatically diagnose late-life depression

DTI index

Classifier

Balanced accuracy (%)

Recall (%)

Precision (%)

F1 (%)

ROC-AUC

FA volume

AdaBoost

55

78

69

71

0.60

Gboost

47

66

63

62

0.49

SVM

60

69

74

69

0.68

FA

AdaBoost

50

72

67

67

0.65

Gboost

46

68

61

63

0.48

SVM

56

81

72

74

0.52

Trace

AdaBoost

71

84

83

81

0.81

Gboost

68

88

80

81

0.77

SVM

57

72

73

70

0.71

AD

AdaBoost

48

72

66

67

0.48

Gboost

69

88

80

82

0.71

SVM

52

70

68

66

0.58

RD

AdaBoost

70

86

83

82

0.80

Gboost

66

85

80

80

0.80

SVM

57

67

72

67

0.69

All features

AdaBoost

67

   

0.78

  1. ROC-AUC receiver operator characteristic curve-area under the curve, FA fractional anisotropy, AD axial diffusivity, RD radial diffusivity, AdaBoost Adaptive Boosting, GBoost Gradient Boosting, SVM Support Vector Machines.