Table 10 Summary of the performance of the algorithms for the control group, considering Input 3 as training data.
Function | 1st Knee contact peak (N/body weight) | 2nd Knee contact peak (N/body weight) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | |
(1) Ensemble trees (bagging) | 0.17 | 6.52 | 0.20 | 0.82 | 0.68 | 0.08 | \(-\) 0.03 | 0.18 | 0.25 | 8.89 | 0.31 | 0.54 | 0.29 | 0.21 | 0.10 | 0.33 |
(2) Ensemble trees (LSBoost) | 0.26 | 9.93 | 0.34 | 0.88 | 0.77 | \(-\) 0.08 | \(-\) 0.26 | 0.10 | 0.29 | 10.05 | 0.43 | 0.54 | 0.29 | 0.13 | \(-\) 0.10 | 0.36 |
(3) Linear SVR | 0.14 | 5.75 | 0.17 | 0.96 | 0.93 | 0.14 | 0.09 | 0.19 | 0.10 | 3.34 | 0.12 | 0.95 | 0.90 | 0.09 | 0.04 | 0.13 |
(4) Quadratic SVR | 0.10 | 3.88 | 0.12 | 0.96 | 0.92 | 0.08 | 0.02 | 0.13 | 0.10 | 3.35 | 0.11 | 0.94 | 0.88 | 0.06 | 0.01 | 0.12 |
(5) Cubic SVR | 0.10 | 4.07 | 0.13 | 0.97 | 0.95 | 0.09 | 0.03 | 0.14 | 0.09 | 3.02 | 0.10 | 0.95 | 0.91 | 0.07 | 0.02 | 0.11 |
(6) Gaussian SVR | 0.08 | 3.63 | 0.12 | 0.97 | 0.94 | 0.07 | 0.01 | 0.12 | 0.09 | 2.99 | 0.10 | 0.95 | 0.90 | 0.06 | 0.02 | 0.11 |
(7) Linear regression | 0.12 | 4.40 | 0.14 | 0.90 | 0.81 | 0.01 | \(-\) 0.07 | 0.08 | 0.17 | 5.69 | 0.20 | 0.61 | 0.38 | \(-\) 0.01 | \(-\) 0.12 | 0.10 |
(8) Lasso regression | 0.12 | 4.92 | 0.15 | 0.99 | 0.98 | 0.11 | 0.06 | 0.17 | 0.20 | 7.19 | 0.27 | 0.56 | 0.31 | 0.16 | 0.04 | 0.27 |
(9) Ridge regression | 0.12 | 4.86 | 0.15 | 0.96 | 0.93 | 0.11 | 0.05 | 0.16 | 0.14 | 4.96 | 0.16 | 0.95 | 0.90 | 0.14 | 0.09 | 0.18 |
(10) Binary decision tree | 0.25 | 9.44 | 0.29 | 0.89 | 0.79 | 0.09 | \(-\) 0.06 | 0.24 | 0.27 | 9.49 | 0.37 | 0.37 | 0.14 | 0.21 | 0.04 | 0.38 |
(11) GR (K.-exponential) | 0.10 | 4.29 | 0.14 | 0.96 | 0.92 | 0.06 | \(-\) 0.01 | 0.13 | 0.17 | 5.92 | 0.23 | 0.60 | 0.37 | 0.11 | \(-\) 0.01 | 0.22 |
(12) GR (K.-squared exponential) | 0.09 | 3.80 | 0.12 | 0.96 | 0.92 | 0.06 | 0.00 | 0.12 | 0.10 | 3.32 | 0.12 | 0.92 | 0.85 | 0.06 | 0.00 | 0.11 |
(13) GR (K.-matern 32) | 0.08 | 3.62 | 0.11 | 0.97 | 0.93 | 0.06 | 0.00 | 0.11 | 0.10 | 3.25 | 0.12 | 0.92 | 0.84 | 0.06 | 0.00 | 0.11 |
(14) GR (K.-matern 52) | 0.08 | 3.47 | 0.11 | 0.97 | 0.94 | 0.06 | 0.01 | 0.11 | 0.10 | 3.22 | 0.11 | 0.92 | 0.85 | 0.06 | 0.00 | 0.11 |
(15) GR (K.-rational quadratic) | 0.09 | 3.69 | 0.12 | 0.96 | 0.92 | 0.06 | 0.00 | 0.12 | 0.10 | 3.32 | 0.12 | 0.92 | 0.85 | 0.06 | 0.00 | 0.11 |
(16) ETSVR-Kernel linear | 0.16 | 6.28 | 0.19 | 0.94 | 0.89 | 0.15 | 0.09 | 0.21 | 0.12 | 4.29 | 0.15 | 0.94 | 0.88 | 0.12 | 0.07 | 0.17 |
(17) Kernel ridge regression | 0.15 | 5.93 | 0.18 | 0.94 | 0.89 | 0.14 | 0.08 | 0.20 | 0.14 | 4.72 | 0.16 | 0.96 | 0.92 | 0.14 | 0.10 | 0.18 |
(18) Nyström ridge regression | 0.17 | 7.04 | 0.21 | 0.93 | 0.87 | 0.17 | 0.10 | 0.23 | 0.22 | 7.67 | 0.28 | 0.36 | 0.13 | 0.05 | \(-\) 0.10 | 0.21 |
(19) DNNE | 0.18 | 6.68 | 0.25 | 0.69 | 0.47 | \(-\) 0.02 | \(-\) 0.16 | 0.11 | 0.09 | 3.04 | 0.10 | 0.92 | 0.85 | 0.00 | \(-\) 0.05 | 0.06 |
(20) kNN weighted mean | 0.20 | 7.83 | 0.24 | 0.67 | 0.45 | \(-\) 0.02 | \(-\) 0.15 | 0.12 | 0.28 | 10.37 | 0.40 | 0.18 | 0.03 | 0.25 | 0.08 | 0.42 |
(21) RKNNWTSVR | 0.15 | 6.00 | 0.18 | 0.94 | 0.89 | 0.14 | 0.08 | 0.20 | 0.10 | 3.59 | 0.13 | 0.92 | 0.85 | 0.08 | 0.02 | 0.14 |
(22) LTSVR | 0.18 | 7.25 | 0.22 | 0.84 | 0.71 | 0.13 | 0.03 | 0.22 | 0.15 | 5.02 | 0.17 | 0.93 | 0.87 | 0.14 | 0.09 | 0.19 |
(23) Stepwise glm | 0.16 | 6.68 | 0.20 | 0.98 | 0.96 | 0.15 | 0.08 | 0.23 | 0.30 | 10.62 | 0.35 | 0.33 | 0.11 | 0.23 | 0.09 | 0.38 |
(24) Neural networks | 0.10 | 3.94 | 0.12 | 0.94 | 0.89 | \(-\) 0.01 | \(-\) 0.07 | 0.06 | 0.26 | 9.00 | 0.28 | 0.66 | 0.43 | \(-\) 0.12 | \(-\) 0.26 | 0.01 |