Table 2 Summary of the performance of the algorithms for all participants group, considering Input 1 as training data.
Function | 1st Knee contact peak (N/body weight) | 2nd Knee contact peak (N/body weight) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | |
(1) Ensemble trees (bagging) | 0.25 | 8.67 | 0.32 | 0.64 | 0.41 | \(-\) 0.15 | \(-\) 0.25 | \(-\) 0.06 | 0.46 | 13.14 | 0.63 | 0.15 | 0.02 | \(-\) 0.25 | \(-\) 0.44 | \(-\) 0.05 |
(2) Ensemble trees (LSBoost) | 0.36 | 12.59 | 0.42 | 0.49 | 0.24 | \(-\) 0.02 | \(-\) 0.16 | 0.13 | 0.46 | 14.09 | 0.63 | 0.34 | 0.11 | \(-\) 0.09 | \(-\) 0.30 | 0.13 |
(3) Linear SVR | 0.29 | 10.32 | 0.35 | 0.78 | 0.61 | 0.23 | 0.14 | 0.32 | 0.58 | 17.69 | 0.69 | 0.16 | 0.02 | \(-\) 0.18 | \(-\) 0.41 | 0.05 |
(4) Quadratic SVR | 0.39 | 13.60 | 0.51 | 0.44 | 0.19 | \(-\) 0.27 | \(-\) 0.42 | \(-\) 0.13 | 0.59 | 17.81 | 0.69 | 0.01 | 0.00 | \(-\) 0.14 | \(-\) 0.38 | 0.09 |
(5) Cubic SVR | 0.32 | 11.20 | 0.39 | 0.55 | 0.30 | \(-\) 0.24 | \(-\) 0.35 | \(-\) 0.13 | 0.91 | 30.08 | 1.49 | 0.36 | 0.13 | \(-\) 0.48 | \(-\) 0.96 | 0.01 |
(6) Gaussian SVR | 0.19 | 6.79 | 0.23 | 0.88 | 0.77 | \(-\) 0.16 | \(-\) 0.21 | \(-\) 0.11 | 0.48 | 14.68 | 0.53 | 0.02 | 0.00 | 0.04 | \(-\) 0.14 | 0.22 |
(7) Linear regression | 0.20 | 7.43 | 0.25 | 0.77 | 0.59 | 0.13 | 0.05 | 0.20 | 0.59 | 17.49 | 0.75 | 0.25 | 0.07 | \(-\) 0.21 | \(-\) 0.46 | 0.03 |
(8) Lasso regression | 0.21 | 7.74 | 0.27 | 0.71 | 0.50 | 0.10 | 0.02 | 0.19 | 0.58 | 17.26 | 0.70 | 0.07 | 0.01 | \(-\) 0.20 | \(-\) 0.43 | 0.03 |
(9) Ridge regression | 0.28 | 10.60 | 0.39 | 0.59 | 0.35 | 0.19 | 0.08 | 0.31 | 0.60 | 18.40 | 0.69 | 0.06 | 0.00 | \(-\) 0.09 | \(-\) 0.32 | 0.14 |
(10) Binary decision tree | 0.31 | 11.06 | 0.39 | 0.64 | 0.41 | \(-\) 0.24 | \(-\) 0.34 | \(-\) 0.13 | 0.48 | 14.24 | 0.58 | 0.14 | 0.02 | \(-\) 0.09 | \(-\) 0.28 | 0.11 |
(11) GR (K.-exponential) | 0.17 | 5.94 | 0.21 | 0.88 | 0.77 | \(-\) 0.12 | \(-\) 0.18 | \(-\) 0.07 | 0.47 | 14.10 | 0.56 | 0.19 | 0.04 | \(-\) 0.02 | \(-\) 0.22 | 0.17 |
(12) GR (K.-squared exponential) | 0.22 | 7.68 | 0.25 | 0.86 | 0.74 | \(-\) 0.19 | \(-\) 0.25 | \(-\) 0.13 | 0.46 | 13.97 | 0.52 | 0.05 | 0.00 | 0.03 | \(-\) 0.15 | 0.20 |
(13) GR (K.-matern 32) | 0.17 | 6.58 | 0.22 | 0.75 | 0.56 | \(-\) 0.01 | \(-\) 0.09 | 0.06 | 0.47 | 14.41 | 0.54 | 0.10 | 0.01 | 0.01 | \(-\) 0.17 | 0.20 |
(14) GR (K.-matern 52) | 0.20 | 7.06 | 0.23 | 0.89 | 0.79 | \(-\) 0.17 | \(-\) 0.23 | \(-\) 0.12 | 0.47 | 14.36 | 0.53 | 0.06 | 0.00 | 0.02 | \(-\) 0.16 | 0.20 |
(15) GR (K.-rational quadratic) | 0.20 | 6.94 | 0.23 | 0.89 | 0.79 | \(-\) 0.17 | \(-\) 0.22 | \(-\) 0.12 | 0.46 | 14.17 | 0.53 | 0.02 | 0.00 | 0.02 | \(-\) 0.16 | 0.20 |
(16) ETSVR-Kernel linear | 0.35 | 12.62 | 0.47 | 0.63 | 0.40 | 0.26 | 0.12 | 0.39 | 0.57 | 17.49 | 0.69 | 0.05 | 0.00 | \(-\) 0.17 | \(-\) 0.40 | 0.06 |
(17) Kernel ridge regression | 0.37 | 13.16 | 0.49 | 0.65 | 0.42 | 0.28 | 0.14 | 0.41 | 0.62 | 19.04 | 0.72 | 0.00 | 0.00 | \(-\) 0.10 | \(-\) 0.35 | 0.14 |
(18) Nyström Ridge Regression | 0.44 | 15.53 | 0.60 | 0.61 | 0.37 | 0.34 | 0.17 | 0.51 | 0.62 | 19.02 | 0.71 | 0.02 | 0.00 | \(-\) 0.09 | \(-\) 0.33 | 0.16 |
(19) DNNE | 0.41 | 14.58 | 0.49 | 0.73 | 0.54 | \(-\) 0.07 | \(-\) 0.23 | 0.10 | 0.28 | 9.05 | 0.38 | 0.68 | 0.46 | 0.03 | \(-\) 0.10 | 0.16 |
(20) kNN weighted mean | 0.49 | 16.93 | 0.58 | 0.53 | 0.28 | \(-\) 0.49 | \(-\) 0.60 | \(-\) 0.38 | 0.46 | 13.23 | 0.61 | 0.02 | 0.00 | \(-\) 0.25 | \(-\) 0.44 | \(-\) 0.06 |
(21) RKNNWTSVR | 0.31 | 11.39 | 0.42 | 0.68 | 0.46 | 0.23 | 0.11 | 0.35 | 0.57 | 17.25 | 0.70 | 0.03 | 0.00 | \(-\) 0.21 | \(-\) 0.43 | 0.02 |
(22) LTSVR | 0.38 | 13.74 | 0.53 | 0.55 | 0.31 | 0.28 | 0.13 | 0.44 | 0.56 | 17.46 | 0.65 | 0.12 | 0.01 | \(-\) 0.05 | \(-\) 0.28 | 0.17 |
(23) Stepwise glm | 0.21 | 7.57 | 0.26 | 0.66 | 0.44 | \(-\) 0.06 | \(-\) 0.15 | 0.02 | 0.48 | 14.46 | 0.60 | 0.24 | 0.06 | \(-\) 0.21 | \(-\) 0.40 | \(-\) 0.02 |
(24) Neural networks | 0.25 | 9.24 | 0.30 | 0.68 | 0.46 | 0.03 | \(-\) 0.08 | 0.13 | 0.76 | 22.45 | 0.92 | 0.48 | 0.23 | \(-\) 0.11 | \(-\) 0.43 | 0.20 |