Table 2 Summary of the performance of the algorithms for all participants group, considering Input 1 as training data.

From: On the prediction of tibiofemoral contact forces for healthy individuals and osteoarthritis patients during gait: a comparative study of regression methods

Function

1st Knee contact peak (N/body weight)

2nd Knee contact peak (N/body weight)

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

(1) Ensemble trees (bagging)

0.25

8.67

0.32

0.64

0.41

\(-\) 0.15

\(-\) 0.25

\(-\) 0.06

0.46

13.14

0.63

0.15

0.02

\(-\) 0.25

\(-\) 0.44

\(-\) 0.05

(2) Ensemble trees (LSBoost)

0.36

12.59

0.42

0.49

0.24

\(-\) 0.02

\(-\) 0.16

0.13

0.46

14.09

0.63

0.34

0.11

\(-\) 0.09

\(-\) 0.30

0.13

(3) Linear SVR

0.29

10.32

0.35

0.78

0.61

0.23

0.14

0.32

0.58

17.69

0.69

0.16

0.02

\(-\) 0.18

\(-\) 0.41

0.05

(4) Quadratic SVR

0.39

13.60

0.51

0.44

0.19

\(-\) 0.27

\(-\) 0.42

\(-\) 0.13

0.59

17.81

0.69

0.01

0.00

\(-\) 0.14

\(-\) 0.38

0.09

(5) Cubic SVR

0.32

11.20

0.39

0.55

0.30

\(-\) 0.24

\(-\) 0.35

\(-\) 0.13

0.91

30.08

1.49

0.36

0.13

\(-\) 0.48

\(-\) 0.96

0.01

(6) Gaussian SVR

0.19

6.79

0.23

0.88

0.77

\(-\) 0.16

\(-\) 0.21

\(-\) 0.11

0.48

14.68

0.53

0.02

0.00

0.04

\(-\) 0.14

0.22

(7) Linear regression

0.20

7.43

0.25

0.77

0.59

0.13

0.05

0.20

0.59

17.49

0.75

0.25

0.07

\(-\) 0.21

\(-\) 0.46

0.03

(8) Lasso regression

0.21

7.74

0.27

0.71

0.50

0.10

0.02

0.19

0.58

17.26

0.70

0.07

0.01

\(-\) 0.20

\(-\) 0.43

0.03

(9) Ridge regression

0.28

10.60

0.39

0.59

0.35

0.19

0.08

0.31

0.60

18.40

0.69

0.06

0.00

\(-\) 0.09

\(-\) 0.32

0.14

(10) Binary decision tree

0.31

11.06

0.39

0.64

0.41

\(-\) 0.24

\(-\) 0.34

\(-\) 0.13

0.48

14.24

0.58

0.14

0.02

\(-\) 0.09

\(-\) 0.28

0.11

(11) GR (K.-exponential)

0.17

5.94

0.21

0.88

0.77

\(-\) 0.12

\(-\) 0.18

\(-\) 0.07

0.47

14.10

0.56

0.19

0.04

\(-\) 0.02

\(-\) 0.22

0.17

(12) GR (K.-squared exponential)

0.22

7.68

0.25

0.86

0.74

\(-\) 0.19

\(-\) 0.25

\(-\) 0.13

0.46

13.97

0.52

0.05

0.00

0.03

\(-\) 0.15

0.20

(13) GR (K.-matern 32)

0.17

6.58

0.22

0.75

0.56

\(-\) 0.01

\(-\) 0.09

0.06

0.47

14.41

0.54

0.10

0.01

0.01

\(-\) 0.17

0.20

(14) GR (K.-matern 52)

0.20

7.06

0.23

0.89

0.79

\(-\) 0.17

\(-\) 0.23

\(-\) 0.12

0.47

14.36

0.53

0.06

0.00

0.02

\(-\) 0.16

0.20

(15) GR (K.-rational quadratic)

0.20

6.94

0.23

0.89

0.79

\(-\) 0.17

\(-\) 0.22

\(-\) 0.12

0.46

14.17

0.53

0.02

0.00

0.02

\(-\) 0.16

0.20

(16) ETSVR-Kernel linear

0.35

12.62

0.47

0.63

0.40

0.26

0.12

0.39

0.57

17.49

0.69

0.05

0.00

\(-\) 0.17

\(-\) 0.40

0.06

(17) Kernel ridge regression

0.37

13.16

0.49

0.65

0.42

0.28

0.14

0.41

0.62

19.04

0.72

0.00

0.00

\(-\) 0.10

\(-\) 0.35

0.14

(18) Nyström Ridge Regression

0.44

15.53

0.60

0.61

0.37

0.34

0.17

0.51

0.62

19.02

0.71

0.02

0.00

\(-\) 0.09

\(-\) 0.33

0.16

(19) DNNE

0.41

14.58

0.49

0.73

0.54

\(-\) 0.07

\(-\) 0.23

0.10

0.28

9.05

0.38

0.68

0.46

0.03

\(-\) 0.10

0.16

(20) kNN weighted mean

0.49

16.93

0.58

0.53

0.28

\(-\) 0.49

\(-\) 0.60

\(-\) 0.38

0.46

13.23

0.61

0.02

0.00

\(-\) 0.25

\(-\) 0.44

\(-\) 0.06

(21) RKNNWTSVR

0.31

11.39

0.42

0.68

0.46

0.23

0.11

0.35

0.57

17.25

0.70

0.03

0.00

\(-\) 0.21

\(-\) 0.43

0.02

(22) LTSVR

0.38

13.74

0.53

0.55

0.31

0.28

0.13

0.44

0.56

17.46

0.65

0.12

0.01

\(-\) 0.05

\(-\) 0.28

0.17

(23) Stepwise glm

0.21

7.57

0.26

0.66

0.44

\(-\) 0.06

\(-\) 0.15

0.02

0.48

14.46

0.60

0.24

0.06

\(-\) 0.21

\(-\) 0.40

\(-\) 0.02

(24) Neural networks

0.25

9.24

0.30

0.68

0.46

0.03

\(-\) 0.08

0.13

0.76

22.45

0.92

0.48

0.23

\(-\) 0.11

\(-\) 0.43

0.20

  1. Best results (i.e. highest accuracy) are in bold.
  2. RMSE root mean squared error, R Pearson correlation coefficient, (R\(^2\)) the coefficient of determination, MDF mean delta force, LCI lower confidence interval, UPF upper confidence interval, GR Gaussian regression, K Kernel.