Table 3 Summary of the performance of the algorithms for all participants group, considering input 2 as training data.

From: On the prediction of tibiofemoral contact forces for healthy individuals and osteoarthritis patients during gait: a comparative study of regression methods

Function

1st Knee contact peak (N/body weight)

2nd Knee contact peak (N/body weight)

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

(1) Ensemble trees (bagging)

0.27

9.59

0.35

0.58

0.33

0.03

\(-\) 0.09

0.15

0.45

12.65

0.61

0.10

0.01

\(-\) 0.24

\(-\) 0.44

\(-\) 0.05

(2) Ensemble trees (LSBoost)

0.33

11.29

0.41

0.45

0.20

\(-\) 0.05

\(-\) 0.19

0.09

0.61

19.17

0.76

0.16

0.03

\(-\) 0.17

\(-\) 0.42

0.09

(3) Linear SVR

0.29

10.29

0.35

0.78

0.60

0.23

0.13

0.32

0.37

11.11

0.47

0.39

0.15

\(-\) 0.05

\(-\) 0.21

0.11

(4) Quadratic SVR

0.29

10.17

0.37

0.64

0.41

\(-\) 0.05

\(-\) 0.18

0.07

0.29

10.04

0.40

0.40

0.16

\(-\) 0.20

\(-\) 0.32

\(-\) 0.08

(5) Cubic SVR

0.22

7.80

0.29

0.53

0.28

\(-\) 0.06

\(-\) 0.16

0.04

0.52

15.25

0.67

0.08

0.01

\(-\) 0.28

\(-\) 0.49

\(-\) 0.07

(6) Gaussian SVR

0.19

6.85

0.22

0.87

0.76

\(-\) 0.15

\(-\) 0.20

\(-\) 0.09

0.49

15.28

0.57

0.06

0.00

0.08

\(-\) 0.12

0.27

(7) Linear regression

0.20

7.37

0.25

0.77

0.59

0.12

0.05

0.20

0.53

15.39

0.68

0.28

0.08

\(-\) 0.16

\(-\) 0.38

0.07

(8) Lasso regression

0.20

7.09

0.24

0.72

0.51

0.06

\(-\) 0.02

0.14

0.62

17.98

0.79

0.32

0.10

\(-\) 0.23

\(-\) 0.49

0.03

(9) Ridge regression

0.27

9.76

0.37

0.58

0.34

0.15

0.03

0.26

0.59

17.45

0.72

0.28

0.08

\(-\) 0.02

\(-\) 0.26

0.23

(10) Binary decision tree

0.46

15.84

0.60

0.41

0.16

0.11

\(-\) 0.10

0.31

0.55

16.37

0.68

0.28

0.08

\(-\) 0.09

\(-\) 0.32

0.15

(11) GR (K.-exponential)

0.22

7.68

0.25

0.86

0.74

\(-\) 0.19

\(-\) 0.25

\(-\) 0.13

0.46

14.08

0.53

0.09

0.01

\(-\) 0.05

\(-\) 0.23

0.13

(12) GR (K.-squared exponential)

0.19

6.76

0.24

0.85

0.72

\(-\) 0.12

\(-\) 0.19

\(-\) 0.05

0.42

12.75

0.52

0.09

0.01

0.00

\(-\) 0.17

0.18

(13) GR (K.-matern 32)

0.19

6.64

0.22

0.89

0.79

\(-\) 0.16

\(-\) 0.21

\(-\) 0.11

0.48

14.30

0.59

0.22

0.05

\(-\) 0.08

\(-\) 0.28

0.12

(14) GR (K.-matern 52)

0.20

7.06

0.23

0.89

0.79

\(-\) 0.17

\(-\) 0.23

\(-\) 0.12

0.48

14.36

0.56

0.07

0.01

\(-\) 0.08

\(-\) 0.27

0.11

(15) GR (K.-rational quadratic)

0.20

6.94

0.23

0.89

0.79

\(-\) 0.17

\(-\) 0.22

\(-\) 0.12

0.47

14.12

0.54

0.06

0.00

\(-\) 0.06

\(-\) 0.24

0.13

(16) ETSVR-Kernel linear

0.32

11.29

0.44

0.57

0.32

0.21

0.07

0.34

0.47

14.13

0.58

0.06

0.00

0.02

\(-\) 0.18

0.21

(17) Kernel ridge regression

0.37

12.95

0.54

0.55

0.31

0.24

0.07

0.40

0.51

15.42

0.62

0.07

0.01

0.02

\(-\) 0.19

0.24

(18) Nyström ridge regression

0.68

23.44

0.90

0.23

0.05

\(-\) 0.12

\(-\) 0.43

0.18

0.75

22.06

0.89

0.44

0.19

\(-\) 0.04

\(-\) 0.35

0.26

(19) DNNE

0.44

15.34

0.53

0.71

0.50

\(-\) 0.02

\(-\) 0.20

0.16

0.70

22.09

0.85

0.33

0.11

\(-\) 0.32

\(-\) 0.59

\(-\) 0.05

(20) kNN weighted Mean

0.49

16.93

0.58

0.53

0.28

\(-\) 0.49

\(-\) 0.60

\(-\) 0.38

0.46

13.23

0.61

0.02

0.00

\(-\) 0.25

\(-\) 0.44

\(-\) 0.06

(21) RKNNWTSVR

0.28

10.28

0.39

0.67

0.45

0.20

0.09

0.32

0.42

12.32

0.55

0.15

0.02

\(-\) 0.11

\(-\) 0.29

0.08

(22) LTSVR

0.34

11.96

0.48

0.53

0.28

0.19

0.04

0.34

0.62

18.55

0.75

0.28

0.08

0.02

\(-\) 0.24

0.28

(23) Stepwise glm

0.18

6.37

0.26

0.69

0.47

0.00

\(-\) 0.09

0.09

0.48

14.46

0.60

0.24

0.06

\(-\) 0.21

\(-\) 0.40

\(-\) 0.02

(24) Neural networks

0.16

6.12

0.20

0.79

0.63

0.01

\(-\) 0.06

0.08

0.65

20.61

0.79

0.35

0.13

0.19

\(-\) 0.07

0.45

  1. Best results (i.e. highest accuracy) are in bold.
  2. RMSE root mean squared error, R Pearson correlation coefficient, (R\(^2\)) the coefficient of determination, MDF mean delta force, LCI lower confidence interval, UPF upper confidence interval, GR Gaussian regression, K Kernel.