Table 4 Summary of the performance of the algorithms for All Participants group, considering Input 3 as training data.

From: On the prediction of tibiofemoral contact forces for healthy individuals and osteoarthritis patients during gait: a comparative study of regression methods

Function

1st Knee contact peak (N/body weight)

2nd Knee contact peak (N/body weight)

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

(1) Ensemble trees bagging)

0.27

9.56

0.34

0.80

0.64

0.20

0.11

0.29

0.42

11.77

0.58

0.11

0.01

\(-\) 0.19

\(-\) 0.38

0.00

(2) Ensemble trees (LSBoost)

0.26

9.16

0.36

0.76

0.58

\(-\) 0.05

\(-\) 0.17

0.08

0.54

15.55

0.74

0.00

0.00

\(-\) 0.30

\(-\) 0.54

\(-\) 0.07

(3) Linear SVR

0.10

3.93

0.14

0.93

0.87

0.06

0.02

0.10

0.16

4.71

0.21

0.94

0.88

\(-\) 0.07

\(-\) 0.14

\(-\) 0.01

(4) Quadratic SVR

0.31

10.41

0.44

0.78

0.60

0.12

\(-\) 0.03

0.27

0.20

5.61

0.26

0.92

0.84

\(-\) 0.07

\(-\) 0.16

0.01

(5) Cubic SVR

0.13

4.64

0.18

0.92

0.85

0.12

0.07

0.16

0.18

5.04

0.25

0.93

0.86

\(-\) 0.07

\(-\) 0.15

0.01

(6) Gaussian SVR

0.09

3.37

0.12

0.94

0.88

0.01

\(-\) 0.03

0.05

0.19

5.36

0.26

0.92

0.85

\(-\) 0.07

\(-\) 0.16

0.01

(7) Linear regression

0.67

21.98

0.99

0.79

0.63

0.61

0.35

0.88

0.37

10.23

0.51

0.46

0.21

\(-\) 0.27

\(-\) 0.42

\(-\) 0.11

(8) Lasso regression

0.11

4.13

0.15

0.93

0.86

0.09

0.05

0.13

0.47

13.25

0.65

0.01

0.00

\(-\) 0.31

\(-\) 0.50

\(-\) 0.11

(9) Ridge regression

0.15

5.38

0.20

0.92

0.85

0.14

0.10

0.19

0.32

9.32

0.44

0.61

0.37

\(-\) 0.20

\(-\) 0.33

\(-\) 0.06

(10) Binary decision tree

0.21

7.40

0.25

0.83

0.69

0.05

\(-\) 0.03

0.14

0.54

15.31

0.73

0.14

0.02

\(-\) 0.29

\(-\) 0.52

\(-\) 0.06

(11) GR (K.-exponential)

0.11

4.22

0.15

0.92

0.84

0.06

0.01

0.10

0.38

10.47

0.55

0.23

0.05

\(-\) 0.25

\(-\) 0.42

\(-\) 0.08

(12) GR (K.-squared exponential)

0.10

3.60

0.12

0.94

0.87

0.03

\(-\) 0.01

0.07

0.23

6.57

0.32

0.87

0.76

\(-\) 0.12

\(-\) 0.22

\(-\) 0.01

(13) GR (K.-matern 32)

0.09

3.46

0.11

0.94

0.88

0.02

\(-\) 0.02

0.05

0.23

6.44

0.34

0.87

0.76

\(-\) 0.15

\(-\) 0.25

\(-\) 0.04

(14) GR (K.-matern 52)

0.10

3.70

0.13

0.92

0.84

\(-\) 0.01

\(-\) 0.06

0.03

0.23

6.50

0.33

0.87

0.76

\(-\) 0.13

\(-\) 0.24

\(-\) 0.03

(15) GR (K.-rational quadratic)

0.09

3.55

0.12

0.93

0.87

0.01

\(-\) 0.04

0.05

0.23

6.57

0.32

0.87

0.76

\(-\) 0.12

\(-\) 0.22

\(-\) 0.01

(16) ETSVR-Kernel Linear

0.13

4.75

0.17

0.86

0.74

0.03

\(-\) 0.03

0.09

0.25

7.38

0.34

0.80

0.63

\(-\) 0.14

\(-\) 0.25

\(-\) 0.04

(17) Kernel ridge regression

0.12

4.41

0.16

0.89

0.79

0.03

\(-\) 0.02

0.09

0.29

8.29

0.38

0.72

0.52

\(-\) 0.16

\(-\) 0.28

\(-\) 0.05

(18) Nyström ridge regression

0.13

4.70

0.16

0.88

0.78

0.01

\(-\) 0.05

0.06

0.21

6.19

0.27

0.86

0.74

\(-\) 0.05

\(-\) 0.14

0.04

(19) DNNE

0.46

15.70

0.64

0.73

0.54

0.37

0.19

0.55

0.35

9.88

0.52

0.31

0.10

\(-\) 0.18

\(-\) 0.34

\(-\) 0.01

(20) kNN weighted mean

0.39

13.83

0.47

0.71

0.50

0.26

0.13

0.40

0.55

16.21

0.76

0.15

0.02

\(-\) 0.25

\(-\) 0.50

0.00

(21) RKNNWTSVR

0.13

4.61

0.16

0.89

0.79

0.05

0.00

0.11

0.26

7.55

0.36

0.79

0.62

\(-\) 0.18

\(-\) 0.29

\(-\) 0.07

(22) LTSVR

0.23

8.16

0.29

0.54

0.29

\(-\) 0.09

\(-\) 0.19

0.00

0.41

11.66

0.57

0.37

0.14

\(-\) 0.28

\(-\) 0.45

\(-\) 0.11

(23) Stepwise glm

0.13

5.10

0.18

0.87

0.75

0.02

\(-\) 0.04

0.09

0.45

13.31

0.58

0.13

0.02

\(-\) 0.22

\(-\) 0.40

\(-\) 0.03

(24) Neural networks

0.13

4.56

0.16

0.90

0.80

\(-\) 0.04

\(-\) 0.10

0.01

0.20

6.35

0.23

0.92

0.85

\(-\) 0.09

\(-\) 0.16

\(-\) 0.02

  1. Best results (i.e. highest accuracy) are in bold.
  2. RMSE root mean squared error, R Pearson correlation coefficient, (R\(^2\)) the coefficient of determination, MDF mean delta force, LCI lower confidence interval, UPF upper confidence interval, GR Gaussian regression, K Kernel.