Table 4 Summary of the performance of the algorithms for All Participants group, considering Input 3 as training data.
Function | 1st Knee contact peak (N/body weight) | 2nd Knee contact peak (N/body weight) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | |
(1) Ensemble trees bagging) | 0.27 | 9.56 | 0.34 | 0.80 | 0.64 | 0.20 | 0.11 | 0.29 | 0.42 | 11.77 | 0.58 | 0.11 | 0.01 | \(-\) 0.19 | \(-\) 0.38 | 0.00 |
(2) Ensemble trees (LSBoost) | 0.26 | 9.16 | 0.36 | 0.76 | 0.58 | \(-\) 0.05 | \(-\) 0.17 | 0.08 | 0.54 | 15.55 | 0.74 | 0.00 | 0.00 | \(-\) 0.30 | \(-\) 0.54 | \(-\) 0.07 |
(3) Linear SVR | 0.10 | 3.93 | 0.14 | 0.93 | 0.87 | 0.06 | 0.02 | 0.10 | 0.16 | 4.71 | 0.21 | 0.94 | 0.88 | \(-\) 0.07 | \(-\) 0.14 | \(-\) 0.01 |
(4) Quadratic SVR | 0.31 | 10.41 | 0.44 | 0.78 | 0.60 | 0.12 | \(-\) 0.03 | 0.27 | 0.20 | 5.61 | 0.26 | 0.92 | 0.84 | \(-\) 0.07 | \(-\) 0.16 | 0.01 |
(5) Cubic SVR | 0.13 | 4.64 | 0.18 | 0.92 | 0.85 | 0.12 | 0.07 | 0.16 | 0.18 | 5.04 | 0.25 | 0.93 | 0.86 | \(-\) 0.07 | \(-\) 0.15 | 0.01 |
(6) Gaussian SVR | 0.09 | 3.37 | 0.12 | 0.94 | 0.88 | 0.01 | \(-\) 0.03 | 0.05 | 0.19 | 5.36 | 0.26 | 0.92 | 0.85 | \(-\) 0.07 | \(-\) 0.16 | 0.01 |
(7) Linear regression | 0.67 | 21.98 | 0.99 | 0.79 | 0.63 | 0.61 | 0.35 | 0.88 | 0.37 | 10.23 | 0.51 | 0.46 | 0.21 | \(-\) 0.27 | \(-\) 0.42 | \(-\) 0.11 |
(8) Lasso regression | 0.11 | 4.13 | 0.15 | 0.93 | 0.86 | 0.09 | 0.05 | 0.13 | 0.47 | 13.25 | 0.65 | 0.01 | 0.00 | \(-\) 0.31 | \(-\) 0.50 | \(-\) 0.11 |
(9) Ridge regression | 0.15 | 5.38 | 0.20 | 0.92 | 0.85 | 0.14 | 0.10 | 0.19 | 0.32 | 9.32 | 0.44 | 0.61 | 0.37 | \(-\) 0.20 | \(-\) 0.33 | \(-\) 0.06 |
(10) Binary decision tree | 0.21 | 7.40 | 0.25 | 0.83 | 0.69 | 0.05 | \(-\) 0.03 | 0.14 | 0.54 | 15.31 | 0.73 | 0.14 | 0.02 | \(-\) 0.29 | \(-\) 0.52 | \(-\) 0.06 |
(11) GR (K.-exponential) | 0.11 | 4.22 | 0.15 | 0.92 | 0.84 | 0.06 | 0.01 | 0.10 | 0.38 | 10.47 | 0.55 | 0.23 | 0.05 | \(-\) 0.25 | \(-\) 0.42 | \(-\) 0.08 |
(12) GR (K.-squared exponential) | 0.10 | 3.60 | 0.12 | 0.94 | 0.87 | 0.03 | \(-\) 0.01 | 0.07 | 0.23 | 6.57 | 0.32 | 0.87 | 0.76 | \(-\) 0.12 | \(-\) 0.22 | \(-\) 0.01 |
(13) GR (K.-matern 32) | 0.09 | 3.46 | 0.11 | 0.94 | 0.88 | 0.02 | \(-\) 0.02 | 0.05 | 0.23 | 6.44 | 0.34 | 0.87 | 0.76 | \(-\) 0.15 | \(-\) 0.25 | \(-\) 0.04 |
(14) GR (K.-matern 52) | 0.10 | 3.70 | 0.13 | 0.92 | 0.84 | \(-\) 0.01 | \(-\) 0.06 | 0.03 | 0.23 | 6.50 | 0.33 | 0.87 | 0.76 | \(-\) 0.13 | \(-\) 0.24 | \(-\) 0.03 |
(15) GR (K.-rational quadratic) | 0.09 | 3.55 | 0.12 | 0.93 | 0.87 | 0.01 | \(-\) 0.04 | 0.05 | 0.23 | 6.57 | 0.32 | 0.87 | 0.76 | \(-\) 0.12 | \(-\) 0.22 | \(-\) 0.01 |
(16) ETSVR-Kernel Linear | 0.13 | 4.75 | 0.17 | 0.86 | 0.74 | 0.03 | \(-\) 0.03 | 0.09 | 0.25 | 7.38 | 0.34 | 0.80 | 0.63 | \(-\) 0.14 | \(-\) 0.25 | \(-\) 0.04 |
(17) Kernel ridge regression | 0.12 | 4.41 | 0.16 | 0.89 | 0.79 | 0.03 | \(-\) 0.02 | 0.09 | 0.29 | 8.29 | 0.38 | 0.72 | 0.52 | \(-\) 0.16 | \(-\) 0.28 | \(-\) 0.05 |
(18) Nyström ridge regression | 0.13 | 4.70 | 0.16 | 0.88 | 0.78 | 0.01 | \(-\) 0.05 | 0.06 | 0.21 | 6.19 | 0.27 | 0.86 | 0.74 | \(-\) 0.05 | \(-\) 0.14 | 0.04 |
(19) DNNE | 0.46 | 15.70 | 0.64 | 0.73 | 0.54 | 0.37 | 0.19 | 0.55 | 0.35 | 9.88 | 0.52 | 0.31 | 0.10 | \(-\) 0.18 | \(-\) 0.34 | \(-\) 0.01 |
(20) kNN weighted mean | 0.39 | 13.83 | 0.47 | 0.71 | 0.50 | 0.26 | 0.13 | 0.40 | 0.55 | 16.21 | 0.76 | 0.15 | 0.02 | \(-\) 0.25 | \(-\) 0.50 | 0.00 |
(21) RKNNWTSVR | 0.13 | 4.61 | 0.16 | 0.89 | 0.79 | 0.05 | 0.00 | 0.11 | 0.26 | 7.55 | 0.36 | 0.79 | 0.62 | \(-\) 0.18 | \(-\) 0.29 | \(-\) 0.07 |
(22) LTSVR | 0.23 | 8.16 | 0.29 | 0.54 | 0.29 | \(-\) 0.09 | \(-\) 0.19 | 0.00 | 0.41 | 11.66 | 0.57 | 0.37 | 0.14 | \(-\) 0.28 | \(-\) 0.45 | \(-\) 0.11 |
(23) Stepwise glm | 0.13 | 5.10 | 0.18 | 0.87 | 0.75 | 0.02 | \(-\) 0.04 | 0.09 | 0.45 | 13.31 | 0.58 | 0.13 | 0.02 | \(-\) 0.22 | \(-\) 0.40 | \(-\) 0.03 |
(24) Neural networks | 0.13 | 4.56 | 0.16 | 0.90 | 0.80 | \(-\) 0.04 | \(-\) 0.10 | 0.01 | 0.20 | 6.35 | 0.23 | 0.92 | 0.85 | \(-\) 0.09 | \(-\) 0.16 | \(-\) 0.02 |