Table 5 Summary of the performance of the algorithms for the OA group, considering input 1 as training data.

From: On the prediction of tibiofemoral contact forces for healthy individuals and osteoarthritis patients during gait: a comparative study of regression methods

Function

1st Knee contact peak (N/body weight)

2nd Knee contact peak (N/body weight)

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

(1) Ensemble trees (bagging)

0.28

9.43

0.36

0.47

0.22

\(-\) 0.22

\(-\) 0.36

\(-\) 0.08

0.59

15.35

0.78

0.17

0.03

\(-\) 0.58

\(-\) 0.83

\(-\) 0.33

(2) Ensemble trees (LSBoost)

0.46

15.61

0.52

0.27

0.08

\(-\) 0.04

\(-\) 0.29

0.20

0.50

14.20

0.73

0.58

0.34

\(-\) 0.46

\(-\) 0.73

\(-\) 0.18

(3) Linear SVR

0.34

11.19

0.40

0.85

0.72

0.34

0.24

0.44

0.69

19.81

0.81

0.65

0.42

\(-\) 0.67

\(-\) 0.89

\(-\) 0.46

(4) Quadratic SVR

0.57

19.08

0.66

0.62

0.39

\(-\) 0.50

\(-\) 0.71

\(-\) 0.29

0.66

18.16

0.79

0.57

0.33

\(-\) 0.66

\(-\) 0.87

\(-\) 0.45

(5) Cubic SVR

0.42

13.93

0.48

0.59

0.35

\(-\) 0.37

\(-\) 0.52

\(-\) 0.22

1.27

41.48

1.94

0.74

0.55

\(-\) 1.23

\(-\) 1.95

\(-\) 0.50

(6) Gaussian SVR

0.18

6.13

0.21

0.85

0.72

\(-\) 0.16

\(-\) 0.22

\(-\) 0.09

0.52

14.79

0.58

0.14

0.02

\(-\) 0.26

\(-\) 0.51

\(-\) 0.01

(7) Linear regression

0.17

5.79

0.21

0.84

0.70

0.13

0.05

0.21

0.75

20.26

0.91

0.18

0.03

\(-\) 0.70

\(-\) 0.98

\(-\) 0.42

(8) Lasso regression

0.17

5.63

0.24

0.68

0.47

0.11

0.01

0.21

0.71

19.57

0.84

0.45

0.20

\(-\) 0.68

\(-\) 0.92

\(-\) 0.44

(9) Ridge regression

0.28

9.61

0.41

0.54

0.29

0.25

0.10

0.41

0.63

17.56

0.75

0.62

0.39

\(-\) 0.61

\(-\) 0.82

\(-\) 0.40

(10) Binary decision tree

0.38

13.00

0.45

0.71

0.51

\(-\) 0.37

\(-\) 0.49

\(-\) 0.24

0.52

13.82

0.65

0.09

0.01

\(-\) 0.33

\(-\) 0.60

\(-\) 0.06

(11) GR (K.-exponential)

0.15

5.11

0.18

0.84

0.70

\(-\) 0.10

\(-\) 0.17

\(-\) 0.02

0.51

13.57

0.63

0.28

0.08

\(-\) 0.38

\(-\) 0.62

\(-\) 0.14

(12) GR (K.-squared exponential)

0.26

8.57

0.28

0.85

0.72

\(-\) 0.24

\(-\) 0.31

\(-\) 0.18

0.52

14.52

0.59

0.08

0.01

\(-\) 0.26

\(-\) 0.51

0.00

(13) GR (K.-matern 32)

0.12

4.13

0.14

0.92

0.86

\(-\) 0.10

\(-\) 0.15

\(-\) 0.05

0.53

14.80

0.61

0.02

0.00

\(-\) 0.30

\(-\) 0.56

\(-\) 0.04

(14) GR (K.-matern 52)

0.22

7.40

0.24

0.87

0.76

\(-\) 0.21

\(-\) 0.27

\(-\) 0.15

0.53

14.89

0.61

0.02

0.00

\(-\) 0.28

\(-\) 0.54

\(-\) 0.02

(15) GR (K.-rational quadratic)

0.21

7.18

0.23

0.87

0.76

\(-\) 0.20

\(-\) 0.26

\(-\) 0.14

0.53

14.79

0.60

0.01

0.00

\(-\) 0.27

\(-\) 0.53

\(-\) 0.02

(16) ETSVR-Kernel Linear

0.40

13.63

0.56

0.53

0.28

0.39

0.20

0.59

0.67

18.59

0.80

0.59

0.35

\(-\) 0.67

\(-\) 0.88

\(-\) 0.45

(17) Kernel ridge regression

0.44

14.88

0.59

0.55

0.30

0.43

0.24

0.63

0.66

18.46

0.79

0.56

0.32

\(-\) 0.64

\(-\) 0.86

\(-\) 0.41

(18) Nyström ridge regression

0.53

17.66

0.71

0.49

0.24

0.51

0.28

0.75

0.35

9.29

0.55

0.51

0.26

\(-\) 0.26

\(-\) 0.49

\(-\) 0.03

(19) DNNE

0.35

11.61

0.43

0.74

0.55

0.28

0.12

0.43

0.17

4.73

0.22

0.95

0.90

\(-\) 0.15

\(-\) 0.23

\(-\) 0.07

(20) kNN weighted mean

0.32

10.38

0.37

0.65

0.43

\(-\) 0.31

\(-\) 0.40

\(-\) 0.23

0.50

13.21

0.66

0.14

0.02

\(-\) 0.39

\(-\) 0.65

\(-\) 0.14

(21) RKNNWTSVR

0.36

12.14

0.49

0.61

0.38

0.35

0.19

0.51

0.71

19.82

0.83

0.54

0.30

\(-\) 0.69

\(-\) 0.92

\(-\) 0.46

(22) LTSVR

0.44

14.79

0.64

0.43

0.18

0.42

0.19

0.65

0.56

15.78

0.69

0.66

0.43

\(-\) 0.55

\(-\) 0.75

\(-\) 0.35

(23) Stepwise glm

0.17

5.60

0.23

0.71

0.50

\(-\) 0.16

\(-\) 0.24

\(-\) 0.08

0.61

17.14

0.73

0.67

0.45

\(-\) 0.61

\(-\) 0.80

\(-\) 0.41

(24) Neural networks

0.24

8.00

0.28

0.77

0.59

0.06

\(-\) 0.07

0.19

0.79

20.56

1.02

0.26

0.07

\(-\) 0.77

\(-\) 1.10

\(-\) 0.45

  1. Best results (i.e. highest accuracy) are in bold.
  2. RMSE root mean squared error, R Pearson correlation coefficient, (R\(^2\)) the coefficient of determination, MDF mean delta force, LCI lower confidence interval, UPF upper confidence interval, GR Gaussian regression, K Kernel.