Table 5 Summary of the performance of the algorithms for the OA group, considering input 1 as training data.
Function | 1st Knee contact peak (N/body weight) | 2nd Knee contact peak (N/body weight) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | |
(1) Ensemble trees (bagging) | 0.28 | 9.43 | 0.36 | 0.47 | 0.22 | \(-\) 0.22 | \(-\) 0.36 | \(-\) 0.08 | 0.59 | 15.35 | 0.78 | 0.17 | 0.03 | \(-\) 0.58 | \(-\) 0.83 | \(-\) 0.33 |
(2) Ensemble trees (LSBoost) | 0.46 | 15.61 | 0.52 | 0.27 | 0.08 | \(-\) 0.04 | \(-\) 0.29 | 0.20 | 0.50 | 14.20 | 0.73 | 0.58 | 0.34 | \(-\) 0.46 | \(-\) 0.73 | \(-\) 0.18 |
(3) Linear SVR | 0.34 | 11.19 | 0.40 | 0.85 | 0.72 | 0.34 | 0.24 | 0.44 | 0.69 | 19.81 | 0.81 | 0.65 | 0.42 | \(-\) 0.67 | \(-\) 0.89 | \(-\) 0.46 |
(4) Quadratic SVR | 0.57 | 19.08 | 0.66 | 0.62 | 0.39 | \(-\) 0.50 | \(-\) 0.71 | \(-\) 0.29 | 0.66 | 18.16 | 0.79 | 0.57 | 0.33 | \(-\) 0.66 | \(-\) 0.87 | \(-\) 0.45 |
(5) Cubic SVR | 0.42 | 13.93 | 0.48 | 0.59 | 0.35 | \(-\) 0.37 | \(-\) 0.52 | \(-\) 0.22 | 1.27 | 41.48 | 1.94 | 0.74 | 0.55 | \(-\) 1.23 | \(-\) 1.95 | \(-\) 0.50 |
(6) Gaussian SVR | 0.18 | 6.13 | 0.21 | 0.85 | 0.72 | \(-\) 0.16 | \(-\) 0.22 | \(-\) 0.09 | 0.52 | 14.79 | 0.58 | 0.14 | 0.02 | \(-\) 0.26 | \(-\) 0.51 | \(-\) 0.01 |
(7) Linear regression | 0.17 | 5.79 | 0.21 | 0.84 | 0.70 | 0.13 | 0.05 | 0.21 | 0.75 | 20.26 | 0.91 | 0.18 | 0.03 | \(-\) 0.70 | \(-\) 0.98 | \(-\) 0.42 |
(8) Lasso regression | 0.17 | 5.63 | 0.24 | 0.68 | 0.47 | 0.11 | 0.01 | 0.21 | 0.71 | 19.57 | 0.84 | 0.45 | 0.20 | \(-\) 0.68 | \(-\) 0.92 | \(-\) 0.44 |
(9) Ridge regression | 0.28 | 9.61 | 0.41 | 0.54 | 0.29 | 0.25 | 0.10 | 0.41 | 0.63 | 17.56 | 0.75 | 0.62 | 0.39 | \(-\) 0.61 | \(-\) 0.82 | \(-\) 0.40 |
(10) Binary decision tree | 0.38 | 13.00 | 0.45 | 0.71 | 0.51 | \(-\) 0.37 | \(-\) 0.49 | \(-\) 0.24 | 0.52 | 13.82 | 0.65 | 0.09 | 0.01 | \(-\) 0.33 | \(-\) 0.60 | \(-\) 0.06 |
(11) GR (K.-exponential) | 0.15 | 5.11 | 0.18 | 0.84 | 0.70 | \(-\) 0.10 | \(-\) 0.17 | \(-\) 0.02 | 0.51 | 13.57 | 0.63 | 0.28 | 0.08 | \(-\) 0.38 | \(-\) 0.62 | \(-\) 0.14 |
(12) GR (K.-squared exponential) | 0.26 | 8.57 | 0.28 | 0.85 | 0.72 | \(-\) 0.24 | \(-\) 0.31 | \(-\) 0.18 | 0.52 | 14.52 | 0.59 | 0.08 | 0.01 | \(-\) 0.26 | \(-\) 0.51 | 0.00 |
(13) GR (K.-matern 32) | 0.12 | 4.13 | 0.14 | 0.92 | 0.86 | \(-\) 0.10 | \(-\) 0.15 | \(-\) 0.05 | 0.53 | 14.80 | 0.61 | 0.02 | 0.00 | \(-\) 0.30 | \(-\) 0.56 | \(-\) 0.04 |
(14) GR (K.-matern 52) | 0.22 | 7.40 | 0.24 | 0.87 | 0.76 | \(-\) 0.21 | \(-\) 0.27 | \(-\) 0.15 | 0.53 | 14.89 | 0.61 | 0.02 | 0.00 | \(-\) 0.28 | \(-\) 0.54 | \(-\) 0.02 |
(15) GR (K.-rational quadratic) | 0.21 | 7.18 | 0.23 | 0.87 | 0.76 | \(-\) 0.20 | \(-\) 0.26 | \(-\) 0.14 | 0.53 | 14.79 | 0.60 | 0.01 | 0.00 | \(-\) 0.27 | \(-\) 0.53 | \(-\) 0.02 |
(16) ETSVR-Kernel Linear | 0.40 | 13.63 | 0.56 | 0.53 | 0.28 | 0.39 | 0.20 | 0.59 | 0.67 | 18.59 | 0.80 | 0.59 | 0.35 | \(-\) 0.67 | \(-\) 0.88 | \(-\) 0.45 |
(17) Kernel ridge regression | 0.44 | 14.88 | 0.59 | 0.55 | 0.30 | 0.43 | 0.24 | 0.63 | 0.66 | 18.46 | 0.79 | 0.56 | 0.32 | \(-\) 0.64 | \(-\) 0.86 | \(-\) 0.41 |
(18) Nyström ridge regression | 0.53 | 17.66 | 0.71 | 0.49 | 0.24 | 0.51 | 0.28 | 0.75 | 0.35 | 9.29 | 0.55 | 0.51 | 0.26 | \(-\) 0.26 | \(-\) 0.49 | \(-\) 0.03 |
(19) DNNE | 0.35 | 11.61 | 0.43 | 0.74 | 0.55 | 0.28 | 0.12 | 0.43 | 0.17 | 4.73 | 0.22 | 0.95 | 0.90 | \(-\) 0.15 | \(-\) 0.23 | \(-\) 0.07 |
(20) kNN weighted mean | 0.32 | 10.38 | 0.37 | 0.65 | 0.43 | \(-\) 0.31 | \(-\) 0.40 | \(-\) 0.23 | 0.50 | 13.21 | 0.66 | 0.14 | 0.02 | \(-\) 0.39 | \(-\) 0.65 | \(-\) 0.14 |
(21) RKNNWTSVR | 0.36 | 12.14 | 0.49 | 0.61 | 0.38 | 0.35 | 0.19 | 0.51 | 0.71 | 19.82 | 0.83 | 0.54 | 0.30 | \(-\) 0.69 | \(-\) 0.92 | \(-\) 0.46 |
(22) LTSVR | 0.44 | 14.79 | 0.64 | 0.43 | 0.18 | 0.42 | 0.19 | 0.65 | 0.56 | 15.78 | 0.69 | 0.66 | 0.43 | \(-\) 0.55 | \(-\) 0.75 | \(-\) 0.35 |
(23) Stepwise glm | 0.17 | 5.60 | 0.23 | 0.71 | 0.50 | \(-\) 0.16 | \(-\) 0.24 | \(-\) 0.08 | 0.61 | 17.14 | 0.73 | 0.67 | 0.45 | \(-\) 0.61 | \(-\) 0.80 | \(-\) 0.41 |
(24) Neural networks | 0.24 | 8.00 | 0.28 | 0.77 | 0.59 | 0.06 | \(-\) 0.07 | 0.19 | 0.79 | 20.56 | 1.02 | 0.26 | 0.07 | \(-\) 0.77 | \(-\) 1.10 | \(-\) 0.45 |