Table 7 Summary of the performance of the algorithms for the OA group, considering Input 3 as training data.
Function | 1st Knee contact peak (N/body weight) | 2nd Knee contact peak (N/body weight) | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | MAE | RPE | RMSE | R | R2 | MDF | LCI | UCI | |
(1) Ensemble trees (bagging) | 0.35 | 11.99 | 0.42 | 0.69 | 0.48 | 0.30 | 0.16 | 0.44 | 0.55 | 14.07 | 0.73 | 0.13 | 0.02 | \(-\) 0.51 | \(-\)0.76 | \(-\)0.26 |
(2) Ensemble trees (LSBoost) | 0.25 | 8.55 | 0.37 | 0.44 | 0.20 | \(-\)0.02 | \(-\)0.19 | 0.16 | 0.73 | 19.95 | 0.91 | 0.02 | 0.00 | \(-\)0.65 | \(-\)0.96 | \(-\)0.34 |
(3) Linear SVR | 0.07 | 2.48 | 0.11 | 0.91 | 0.82 | \(-\)0.01 | \(-\)0.06 | 0.04 | 0.21 | 5.80 | 0.26 | 0.96 | 0.92 | \(-\) 0.20 | \(-\) 0.28 | \(-\) 0.13 |
(4) Quadratic SVR | 0.48 | 15.64 | 0.59 | 0.81 | 0.66 | 0.16 | \(-\)0.12 | 0.43 | 0.27 | 7.42 | 0.34 | 0.93 | 0.87 | \(-\)0.18 | \(-\)0.32 | \(-\)0.05 |
(5) Cubic SVR | 0.15 | 5.10 | 0.21 | 0.86 | 0.74 | 0.14 | 0.07 | 0.21 | 0.25 | 6.66 | 0.32 | 0.94 | 0.88 | \(-\)0.18 | \(-\)0.30 | \(-\)0.05 |
(6) Gaussian SVR | 0.09 | 3.16 | 0.11 | 0.92 | 0.85 | \(-\)0.03 | \(-\)0.09 | 0.02 | 0.27 | 7.26 | 0.33 | 0.93 | 0.86 | \(-\)0.18 | \(-\)0.31 | \(-\)0.04 |
(7) Linear regression | 1.11 | 36.04 | 1.32 | 0.84 | 0.70 | 1.10 | 0.75 | 1.45 | 0.53 | 13.86 | 0.67 | 0.44 | 0.19 | \(-\)0.47 | \(-\)0.70 | \(-\)0.25 |
(8) Lasso regression | 0.10 | 3.51 | 0.16 | 0.84 | 0.71 | 0.07 | 0.00 | 0.14 | 0.68 | 18.10 | 0.84 | 0.34 | 0.12 | \(-\)0.67 | \(-\)0.92 | \(-\)0.43 |
(9) Ridge regression | 0.17 | 5.80 | 0.23 | 0.89 | 0.79 | 0.17 | 0.10 | 0.24 | 0.47 | 12.80 | 0.57 | 0.77 | 0.60 | \(-\)0.47 | \(-\)0.63 | \(-\)0.31 |
(10) Binary decision tree | 0.17 | 5.77 | 0.22 | 0.72 | 0.51 | 0.02 | \(-\)0.08 | 0.13 | 0.75 | 19.96 | 0.92 | 0.09 | 0.01 | \(-\)0.69 | \(-\)0.98 | \(-\)0.39 |
(11) GR (K.-exponential) | 0.12 | 4.16 | 0.15 | 0.89 | 0.79 | 0.06 | \(-\)0.01 | 0.12 | 0.54 | 14.12 | 0.71 | 0.53 | 0.28 | \(-\)0.54 | \(-\)0.76 | \(-\)0.32 |
(12) GR (K.-squared exponential) | 0.10 | 3.43 | 0.12 | 0.93 | 0.86 | 0.00 | \(-\)0.05 | 0.06 | 0.34 | 9.17 | 0.42 | 0.92 | 0.84 | \(-\)0.25 | \(-\)0.42 | \(-\)0.09 |
(13) GR (K.-matern 32) | 0.10 | 3.34 | 0.11 | 0.93 | 0.87 | \(-\) 0.02 | \(-\) 0.07 | 0.04 | 0.34 | 8.99 | 0.44 | 0.92 | 0.85 | \(-\)0.31 | \(-\)0.46 | \(-\)0.15 |
(14) GR (K.-matern 52) | 0.11 | 3.88 | 0.15 | 0.92 | 0.84 | \(-\)0.07 | \(-\)0.13 | \(-\)0.01 | 0.34 | 9.12 | 0.43 | 0.92 | 0.85 | \(-\)0.28 | \(-\)0.44 | \(-\)0.13 |
(15) GR (K.-rational quadratic) | 0.10 | 3.43 | 0.12 | 0.93 | 0.86 | \(-\)0.04 | \(-\)0.09 | 0.02 | 0.34 | 9.17 | 0.42 | 0.92 | 0.84 | \(-\)0.25 | \(-\)0.42 | \(-\)0.09 |
(16) ETSVR-Kernel linear | 0.11 | 3.53 | 0.16 | 0.85 | 0.72 | \(-\)0.06 | \(-\)0.13 | 0.01 | 0.36 | 9.84 | 0.43 | 0.89 | 0.79 | \(-\)0.35 | \(-\)0.47 | \(-\)0.23 |
(17) Kernel ridge regression | 0.10 | 3.19 | 0.14 | 0.88 | 0.77 | \(-\)0.05 | \(-\)0.11 | 0.01 | 0.41 | 11.15 | 0.50 | 0.85 | 0.71 | \(-\)0.40 | \(-\)0.54 | \(-\)0.27 |
(18) Nyström ridge regression | 0.24 | 7.80 | 0.31 | 0.53 | 0.28 | 0.00 | \(-\)0.15 | 0.14 | 0.61 | 17.07 | 0.77 | 0.60 | 0.36 | \(-\)0.59 | \(-\)0.83 | \(-\)0.36 |
(19) DNNE | 0.69 | 22.91 | 0.82 | 0.67 | 0.45 | 0.68 | 0.46 | 0.90 | 0.57 | 15.35 | 0.69 | 0.04 | 0.00 | \(-\)0.32 | \(-\)0.61 | \(-\)0.03 |
(20) kNN weighted mean | 0.31 | 10.50 | 0.41 | 0.73 | 0.53 | 0.30 | 0.16 | 0.43 | 0.59 | 15.33 | 0.78 | 0.03 | 0.00 | \(-\)0.54 | \(-\)0.81 | \(-\)0.27 |
(21) RKNNWTSVR | 0.11 | 3.50 | 0.15 | 0.87 | 0.76 | \(-\)0.01 | \(-\)0.09 | 0.06 | 0.39 | 10.73 | 0.47 | 0.86 | 0.75 | \(-\)0.38 | \(-\)0.51 | \(-\)0.25 |
(22) LTSVR | 0.28 | 8.89 | 0.34 | 0.49 | 0.24 | \(-\)0.27 | \(-\)0.37 | \(-\)0.17 | 0.62 | 16.98 | 0.75 | 0.61 | 0.37 | \(-\)0.62 | \(-\)0.82 | \(-\)0.42 |
(23) Stepwise glm | 0.12 | 3.84 | 0.15 | 0.84 | 0.70 | \(-\)0.08 | \(-\)0.14 | \(-\)0.01 | 0.58 | 15.47 | 0.71 | 0.65 | 0.42 | \(-\)0.58 | \(-\)0.77 | \(-\)0.38 |
(24) Neural networks | 0.15 | 5.06 | 0.19 | 0.88 | 0.77 | \(-\)0.07 | \(-\)0.15 | 0.01 | 0.15 | 4.23 | 0.17 | 0.95 | 0.91 | \(-\)0.06 | \(-\)0.14 | 0.01 |