Table 7 Summary of the performance of the algorithms for the OA group, considering Input 3 as training data.

From: On the prediction of tibiofemoral contact forces for healthy individuals and osteoarthritis patients during gait: a comparative study of regression methods

Function

1st Knee contact peak (N/body weight)

2nd Knee contact peak (N/body weight)

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

MAE

RPE

RMSE

R

R2

MDF

LCI

UCI

(1) Ensemble trees (bagging)

0.35

11.99

0.42

0.69

0.48

0.30

0.16

0.44

0.55

14.07

0.73

0.13

0.02

\(-\) 0.51

\(-\)0.76

\(-\)0.26

(2) Ensemble trees (LSBoost)

0.25

8.55

0.37

0.44

0.20

\(-\)0.02

\(-\)0.19

0.16

0.73

19.95

0.91

0.02

0.00

\(-\)0.65

\(-\)0.96

\(-\)0.34

(3) Linear SVR

0.07

2.48

0.11

0.91

0.82

\(-\)0.01

\(-\)0.06

0.04

0.21

5.80

0.26

0.96

0.92

\(-\) 0.20

\(-\) 0.28

\(-\) 0.13

(4) Quadratic SVR

0.48

15.64

0.59

0.81

0.66

0.16

\(-\)0.12

0.43

0.27

7.42

0.34

0.93

0.87

\(-\)0.18

\(-\)0.32

\(-\)0.05

(5) Cubic SVR

0.15

5.10

0.21

0.86

0.74

0.14

0.07

0.21

0.25

6.66

0.32

0.94

0.88

\(-\)0.18

\(-\)0.30

\(-\)0.05

(6) Gaussian SVR

0.09

3.16

0.11

0.92

0.85

\(-\)0.03

\(-\)0.09

0.02

0.27

7.26

0.33

0.93

0.86

\(-\)0.18

\(-\)0.31

\(-\)0.04

(7) Linear regression

1.11

36.04

1.32

0.84

0.70

1.10

0.75

1.45

0.53

13.86

0.67

0.44

0.19

\(-\)0.47

\(-\)0.70

\(-\)0.25

(8) Lasso regression

0.10

3.51

0.16

0.84

0.71

0.07

0.00

0.14

0.68

18.10

0.84

0.34

0.12

\(-\)0.67

\(-\)0.92

\(-\)0.43

(9) Ridge regression

0.17

5.80

0.23

0.89

0.79

0.17

0.10

0.24

0.47

12.80

0.57

0.77

0.60

\(-\)0.47

\(-\)0.63

\(-\)0.31

(10) Binary decision tree

0.17

5.77

0.22

0.72

0.51

0.02

\(-\)0.08

0.13

0.75

19.96

0.92

0.09

0.01

\(-\)0.69

\(-\)0.98

\(-\)0.39

(11) GR (K.-exponential)

0.12

4.16

0.15

0.89

0.79

0.06

\(-\)0.01

0.12

0.54

14.12

0.71

0.53

0.28

\(-\)0.54

\(-\)0.76

\(-\)0.32

(12) GR (K.-squared exponential)

0.10

3.43

0.12

0.93

0.86

0.00

\(-\)0.05

0.06

0.34

9.17

0.42

0.92

0.84

\(-\)0.25

\(-\)0.42

\(-\)0.09

(13) GR (K.-matern 32)

0.10

3.34

0.11

0.93

0.87

\(-\) 0.02

\(-\) 0.07

0.04

0.34

8.99

0.44

0.92

0.85

\(-\)0.31

\(-\)0.46

\(-\)0.15

(14) GR (K.-matern 52)

0.11

3.88

0.15

0.92

0.84

\(-\)0.07

\(-\)0.13

\(-\)0.01

0.34

9.12

0.43

0.92

0.85

\(-\)0.28

\(-\)0.44

\(-\)0.13

(15) GR (K.-rational quadratic)

0.10

3.43

0.12

0.93

0.86

\(-\)0.04

\(-\)0.09

0.02

0.34

9.17

0.42

0.92

0.84

\(-\)0.25

\(-\)0.42

\(-\)0.09

(16) ETSVR-Kernel linear

0.11

3.53

0.16

0.85

0.72

\(-\)0.06

\(-\)0.13

0.01

0.36

9.84

0.43

0.89

0.79

\(-\)0.35

\(-\)0.47

\(-\)0.23

(17) Kernel ridge regression

0.10

3.19

0.14

0.88

0.77

\(-\)0.05

\(-\)0.11

0.01

0.41

11.15

0.50

0.85

0.71

\(-\)0.40

\(-\)0.54

\(-\)0.27

(18) Nyström ridge regression

0.24

7.80

0.31

0.53

0.28

0.00

\(-\)0.15

0.14

0.61

17.07

0.77

0.60

0.36

\(-\)0.59

\(-\)0.83

\(-\)0.36

(19) DNNE

0.69

22.91

0.82

0.67

0.45

0.68

0.46

0.90

0.57

15.35

0.69

0.04

0.00

\(-\)0.32

\(-\)0.61

\(-\)0.03

(20) kNN weighted mean

0.31

10.50

0.41

0.73

0.53

0.30

0.16

0.43

0.59

15.33

0.78

0.03

0.00

\(-\)0.54

\(-\)0.81

\(-\)0.27

(21) RKNNWTSVR

0.11

3.50

0.15

0.87

0.76

\(-\)0.01

\(-\)0.09

0.06

0.39

10.73

0.47

0.86

0.75

\(-\)0.38

\(-\)0.51

\(-\)0.25

(22) LTSVR

0.28

8.89

0.34

0.49

0.24

\(-\)0.27

\(-\)0.37

\(-\)0.17

0.62

16.98

0.75

0.61

0.37

\(-\)0.62

\(-\)0.82

\(-\)0.42

(23) Stepwise glm

0.12

3.84

0.15

0.84

0.70

\(-\)0.08

\(-\)0.14

\(-\)0.01

0.58

15.47

0.71

0.65

0.42

\(-\)0.58

\(-\)0.77

\(-\)0.38

(24) Neural networks

0.15

5.06

0.19

0.88

0.77

\(-\)0.07

\(-\)0.15

0.01

0.15

4.23

0.17

0.95

0.91

\(-\)0.06

\(-\)0.14

0.01

  1. Best results (i.e. highest accuracy) are in bold.
  2. RMSE root mean squared error, R Pearson correlation coefficient, (R\(^2\)) the coefficient of determination, MDF mean delta force, LCI lower confidence interval, UPF upper confidence interval, GR Gaussian regression, K Kernel.