Table 1 Template signature functional forms.

From: Quantifying changes in individual-specific template-based representations of center-of-mass dynamics during walking with ankle exoskeletons using Hybrid-SINDy

Term

Symbol

Normalized form

Leg stiffness

\({\kappa }_{L}\)

\(\frac{{k}_{L}{L}_{bio}}{Mg}\)

Leg resting length

\({\widetilde{L}}_{0}\)

\({L}_{0}/{L}_{bio}\)

Leg damping

\({\zeta }_{L}\)

\(\frac{{c}_{L}}{2\sqrt{{k}_{L}M}}\)

Sagittal-plane rotary stiffness

\({\kappa }_{s}\)

\(\frac{{k}_{s}}{Mg{L}_{bio}}\)

Sagittal-plane rotary damping

\({\zeta }_{s}\)

\(\frac{{c}_{s}}{\sqrt{{\kappa }_{s}M{L}_{bio}^{2}}}\)

Frontal-plane rotary stiffness

\({\kappa }_{f}\)

\(\frac{{k}_{f}}{Mg{L}_{bio}}\)

Frontal-plane rotary damping

\({\zeta }_{f}\)

\(\frac{{c}_{f}}{\sqrt{{\kappa }_{f}M{L}_{bio}^{2}}}\)

  1. \({c}_{L}\) leg damping, \({c}_{s}\) sagittal-plane rotary damping, \({c}_{f}\) frontal-plane rotary damping, g gravitational acceleration, \({k}_{L}\) leg stiffness, \({k}_{s}\) sagittal-plane rotary stiffness, \({k}_{f}\) frontal-plane rotary stiffness, \({L}_{bio}\) biological leg length, \(M\) body mass.