Table 1 Comparison between the proposed system and different machine learning techniques.

From: An AI-based novel system for predicting respiratory support in COVID-19 patients through CT imaging analysis

 

Classifier

Metrics

Class evaluation

Overall evaluation

Level 0

Level 1

Level 2

Overall accuracy (%)

Kohen Kappa (%)

4-fold

Random forest29

Sensitivity (%)

\(90.79 \pm 8.89\)

\(57.80 \pm 6.24\)

\(62.39 \pm 10.82\)

\(76.81 \pm 3.84\)

\(61.04 \pm 6.06\)

Specificity (%)

\(71.74 \pm 8.13\)

\(95.18 \pm 3.77\)

\(91.43 \pm 5.4\)

Decision trees30

Sensitivity (%)

\(83.27 \pm 7.98\)

\(51.46 \pm 9.29\)

\(46.04 \pm 17.58\)

\(67.53 \pm 7.04\)

\(45.88 \pm 11.25\)

Specificity (%)

\(70.8 \pm 6.19\)

\(86.55 \pm 7.74\)

\(88.63 \pm 5.83\)

Naive Bayes31

Sensitivity (%)

\(88.29 \pm 5.07\)

\(67.28 \pm 7.57\)

\(65.17 \pm 13.4\)

\(78.23 \pm 4.53\)

\(63.98 \pm 7.29\)

Specificity (%)

\(78.49 \pm 13.14\)

\(93.89 \pm 2.19\)

\(90.52 \pm 3.38\)

SVM32

Sensitivity (%)

\(90.11 \pm 5.6\)

\(63.29 \pm 5.72\)

\(67.87 \pm 14.51\)

\(78.94 \pm 1.4\)

\(64.77 \pm 1.62\)

Specificity (%)

\(76.67 \pm 8.09\)

\(95.14 \pm 2.46\)

\(91.32 \pm 2.22\)

KNN33

Sensitivity (%)

\(90.79 \pm 7.00\)

\(68.23 \pm 17.28\)

\(67.97 \pm 17.59\)

\(78.91 \pm 1.89\)

\(64.5 \pm 3.08\)

Specificity (%)

\(72.4 \pm 9.31\)

\(95.54 \pm 2.28\)

\(93.42 \pm 3.89\)

AdaBoost34

Sensitivity (%)

\(91.36 \pm 7.95\)

\(62.07 \pm 8.79\)

\(49.93 \pm 15.53\)

\(75.18 \pm 4.21\)

\(58.62 \pm 7.13\)

Specificity (%)

\(71.12 \pm 9.5\)

\(92.26 \pm 2.84\)

\(92.65 \pm 4.15\)

Proposed system

Sensitivity (%)

\({\textbf {93.27}} \pm {\textbf {3.68}}\)

\({\textbf {92}} \pm {\textbf {0}}\)

\({\textbf {93}} \pm {\textbf {2}}\)

\({\textbf {92.77}} \pm {\textbf {1.7}}\)

\({\textbf {89.18}} \pm {\textbf {2.52}}\)

Specificity (%)

\({\textbf {95}} \pm {\textbf {1.15}}\)

\({\textbf {97.55}} \pm {\textbf {1.88}}\)

\({\textbf {96.57}} \pm {\textbf {0.98}}\)

5-fold

Random forest29

Sensitivity (%)

\(92.47 \pm 6.67\)

\(63.77 \pm 11.53\)

\(64.23 \pm 13.48\)

\(79.46 \pm 2.36\)

\(65.60 \pm 4.62\)

Specificity (%)

\(73.29 \pm 10.11\)

\(95.95 \pm 2.78\)

\(93.17 \pm 5.38\)

Decision trees30

Sensitivity (%)

\(78.93 \pm 8.95\)

\(60.27 \pm 13.82\)

\(43.90 \pm 17.26\)

\(66.61 \pm 5.13\)

\(45.90 \pm 9.16\)

Specificity (%)

\(71.43 \pm 9.86\)

\(86.14 \pm 5.89\)

\(87.41 \pm 9.39\)

Naive Bayes31

Sensitivity (%)

\(89.40 \pm 3.95\)

\(66.20 \pm 10.97\)

\(62.98 \pm 15.64\)

\(78.08 \pm 3.56\)

\(63.57 \pm 5.87\)

Specificity (%)

\(77.96 \pm 13.38\)

\(93.48 \pm 3.21\)

\(91.00 \pm 3.77\)

SVM32

Sensitivity (%)

\(92.40 \pm 3.29\)

\(69.36 \pm 11.85\)

\(63.27 \pm 9.88\)

\(80.43 \pm 2.17\)

\(67.37 \pm 4.33\)

Specificity (%)

\(77.5 \pm 8.55\)

\(95.18 \pm 3.03\)

\(92.68 \pm 3.26\)

KNN33

Sensitivity (%)

\(94.72 \pm 2.43\)

\(63.77 \pm 11.53\)

\(61.73 \pm 12.07\)

\(80.03 \pm 1.54\)

\(66.52 \pm 3.04\)

Specificity (%)

\(71.33 \pm 9.41\)

\(96.34 \pm 0.80\)

\(94.71 \pm 2.95\)

AdaBoost34

Sensitivity (%)

\(91.88 \pm 5.56\)

\(62.11 \pm 11.61\)

\(49.81 \pm 15.62\)

\(75.37 \pm 3.51\)

\(59.12 \pm 5.85\)

Specificity (%)

\(70.01 \pm 14.42\)

\(92.72 \pm 3.27\)

\(92.43 \pm 6.25\)

Proposed system

Sensitivity (%)

\({\textbf {92.38}} \pm {\textbf {2.61}}\)

\({\textbf {93.05}} \pm {\textbf {2.78}}\)

\({\textbf {96}} \pm {\textbf {2.24}}\)

\({\textbf {93.79}} \pm {\textbf {1.37}}\)

\({\textbf {90.68}} \pm {\textbf {2.05}}\)

Specificity (%)

\({\textbf {96.52}} \pm {\textbf {1.34}}\)

\({\textbf {97.56}} \pm {\textbf {1.73}}\)

\({\textbf {96.6}} \pm {\textbf {2.19}}\)

10-fold

Random forest29

Sensitivity (%)

\(91.54 \pm 18.57\)

\(67.03 \pm 7.02\)

\(65.39 \pm 16.86\)

\(79.95 \pm 4.94\)

\(66.5 \pm 9.01\)

Specificity (%)

\(77.84 \pm 6.51\)

\(94.91 \pm 14.61\)

\(92.16 \pm 3.77\)

Decision trees30

Sensitivity (%)

\(83.55 \pm 19.80\)

\(61.42 \pm 9.31\)

\(51.98 \pm 22.75\)

\(71.08 \pm 6.97\)

\(52.75 \pm 12.43\)

Specificity (%)

\(71.12 \pm 6.86\)

\(91.14 \pm 15.09\)

\(88.53 \pm 6.30\)

Naive Bayes31

Sensitivity (%)

\(90.28 \pm 21.38\)

\(68.46 \pm 6.91\)

\(63.69 \pm 14.36\)

\(79.26 \pm 3.65\)

\(65.62 \pm 6.94\)

Specificity (%)

\(78.51 \pm 5.56\)

\(93.74 \pm 14.52\)

\(92.07 \pm 5.73\)

SVM32

Sensitivity (%)

\(92.54 \pm 21.83\)

\(67.71 \pm 5.73\)

\(65.25 \pm 18.28\)

\(80.63 \pm 5.77\)

\(67.57 \pm 11.09\)

Specificity (%)

\(76.75 \pm 4.62\)

\(95.83 \pm 17.16\)

\(92.73 \pm 3.72\)

KNN33

Sensitivity (%)

\(94.90 \pm 24.36\)

\(64.67 \pm 4.46\)

\(65.43 \pm 10.29\)

\(81.14 \pm 4.82\)

\(68.45 \pm 8.41\)

Specificity (%)

\(73.56 \pm 4.69\)

\(96.81 \pm 11.73\)

\(94.52 \pm 2.37\)

AdaBoost34

Sensitivity (%)

\(86.04 \pm 21.96\)

\(64.53 \pm 19.02\)

\(60.69 \pm 18.44\)

\(77.13 \pm 5.54\)

\(61.89 \pm 10.16\)

Specificity (%)

\(71.52 \pm 3.74\)

\(92.2 \pm 17.29\)

\(94.94 \pm 4.14\)

Proposed system

Sensitivity (%)

\({\textbf {96.27}} \pm {\textbf {4.82}}\)

\({\textbf {99}} \pm {\textbf {3.16}}\)

\({\textbf {98}} \pm {\textbf {4.26}}\)

\({\textbf {97.72}} \pm {\textbf {1.57}}\)

\({\textbf {96.58}} \pm {\textbf {2.36}}\)

Specificity (%)

\({\textbf {99.5}} \pm {\textbf {1.58}}\)

\({\textbf {98.55}} \pm {\textbf {2.34}}\)

\({\textbf {98.55}} \pm {\textbf {2.34}}\)

  1. Significant values are in [bold].