Table 5 Classification metrics of the three models in the training and test datasets.
CT_train | CT_test | Radiomics_train | Radiomics_test | Combined_train | Combined_test | |
|---|---|---|---|---|---|---|
AUC (95% CI) | 0.604 (0.494, 0.713) | 0.669 (0.528, 0.809) | 0.766 (0.674, 0.858) | 0.804 (0.730, 0.878) | 0.884 (0.820, 0.949) | 0.817 (0.728, 0.905) |
Cutoff | 0.569 | 0.515 | 0.504 | 0.483 | 0.446 | 0.452 |
Accuracy (95% CI) | 0.642 (0.637, 0.646) | 0.702 (0.700, 0.704) | 0.726 (0.723, 0.730) | 0.728 (0.726, 0.730) | 0.858 (0.856, 0.861) | 0.754 (0.753, 0.756) |
Sensitivity (95% CI) | 0.566 (0.433, 0.699) | 0.693 (0.630, 0.756) | 0.660 (0.533, 0.788) | 0.707 (0.645, 0.770) | 0.887 (0.801, 0.972) | 0.746 (0.687, 0.806) |
Specificity (95% CI) | 0.717 (0.596, 0.838) | 0.783 (0.614, 0.951) | 0.792 (0.683, 0.902) | 0.913 (0.798, 1.000) | 0.830 (0.729, 0.931) | 0.826 (0.671, 0.981) |
Positive predict value (95% CI) | 0.667 (0.529, 0.804) | 0.966 (0.937, 0.995) | 0.761 (0.638, 0.884) | 0.986 (0.968, 1.005) | 0.839 (0.743, 0.935) | 0.975 (0.950, 0.999) |
Negative predict value (95% CI) | 0.623 (0.501, 0.745) | 0.222 (0.132, 0.313) | 0.700(0.584, 0.816) | 0.259 (0.164, 0.355) | 0.880 (0.790, 0.970) | 0.268 (0.165, 0.371) |
Positive likelihood ratio (95% CI) | 2.000 (1.226, 3.262) | 3.186 (1.460, 6.956) | 3.182 (1.817, 5.572) | 8.134 (2.157, 30.670) | 5.222 (2.857, 9.544) | 4.291 (1.755, 10.495) |
Negative likelihood ratio (95% CI) | 0.605 (0.426, 0.86) | 0.393 (0.292, 0.529) | 0.429 (0.287, 0.639) | 0.321 (0.250, 0.411) | 0.136 (0.064, 0.293) | 0.307 (0.227, 0.415) |