Table 2 Performance comparison of CNN classifiers trained with different feature encodings on the training dataset.

From: Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features

Feature

AUC

ACC (%)

Sen (%)

Spe (%)

MCC

Pre (%)

F1

GloVe

0.810

75.00

71.15

77.63

0.485

68.52

0.698

fastText

0.785

73.44

67.24

78.57

0.462

72.22

0.696

Word2Vec

0.793

71.09

73.13

68.85

0.420

72.06

0.726

fastText + Word2Vec

0.826

75.78

70.18

80.28

0.508

74.07

0.721

GloVe + Word2Vec

0.820

76.64

71.96

85.00

0.523

77.50

0.713

GloVe + fastText

0.839

78.12

72.96

89.19

0.549

80.95

0.738

GloVe + fastText +Word2Vec

0.864

79.07

75.10

91.49

0.585

86.21

0.740