Table 5 Comparison of descriptive statistics from models trained with segments, segments with vessel (color channel) and segments with spleen on validation set (CRTVal).

From: Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

 

Seg 1,

Seg 2,

Seg 3,

Seg 4,

Seg 5–8,

Spleen, N = 401

N = 40

N = 401

N = 401

N = 401

N = 401

(IntraMD2a = 0.88)

(IntraMD2a = 0.88)

(IntraMD2a = 0.94)

(IntraMD2a = 0.92)

(IntraMD2a = 0.99)

(InterMD2b = 0.82)

(InterMD2b = 0.85)

(InterMD2b = 0.91)

(InterMD2b = 0.88)

(InterMD2b = 0.96)

MnnUnet1

Mseg+spleen1

Mvess1

MnnUnet1

Mseg+spleen1

Mvess1

MnnUnet1

Mseg+spleen1

Mvess1

MnnUnet1

Mseg+spleen1

Mvess1

MnnUnet1

Mseg+spleen1

Mvess1

Mseg+spleen1

Dice

0.93

0.93

0.93

0.86

0.86

0.84

0.91

0.91

0.91

0.91

0.90

0.89

0.97

0.97

0.97

0.99

0.90, 0.07

0.90, 0.06

0.90, 0.07

0.83, 0.09

0.83, 0.10

0.82, 0.10

0.89, 0.10

0.89, 0.10

0.88, 0.12

0.88, 0.08

0.88, 0.08

0.87, 0.09

0.97, 0.03

0.97, 0.02

0.96, 0.03

0.99, 0.01

0.98, 0.70

0.98, 0.75

0.97, 0.73

0.94, 0.51

0.94, 0.48

0.93, 0.47

0.96, 0.36

0.96, 0.36

0.96, 0.21

0.97, 0.56

0.97, 0.55

0.97, 0.57

0.99, 0.86

0.99, 0.91

0.99, 0.84

1.00, 0.96

\({\text{HD}}_{95}^{3}\)

3.1

3.1

3

8.0

7.5

8

6.6

6.5

7

6.5

6.2

7

4.5

4.4

6

0.9

4.6, 6.1

4.6, 5.7

5, 6

9.5, 6.0

8.9, 5.1

9, 5

8.0, 5.5

8.4, 6.7

11, 13

8.3, 6.7

8.4, 6.7

10, 8

7.6, 8.8

7.0, 7.5

9, 12

0.9, 0.7

37.1, 0.8

34.4, 0.8

34, 1

33.4, 3.1

25.8, 2.7

30, 3

28.9, 2.5

32.3, 2.5

81, 2

36.7, 2.1

36.5, 1.5

41, 2

47.0, 0.7

38.2, 0.7

54, 1

2.7, 0.0

Avg. \({\text{HD}}_{{\text{A}}}^{3}\)

0.14

0.13

0.15

0.48

0.45

0.57

0.31

0.28

0.32

0.24

0.24

0.33

0.06

0.06

0.08

0.01

0.30, 0.61

0.28, 0.50

0.29, 0.50

0.69, 0.62

0.66, 0.60

0.70, 0.60

0.49, 0.87

0.52, 0.97

0.64, 1.33

0.47, 0.55

0.47, 0.52

0.64, 0.90

0.18, 0.29

0.13, 0.19

0.27, 0.61

0.02, 0.01

3.85, 0.02

3.14, 0.02

3.16, 0.03

2.92, 0.11

3.16, 0.15

3.02, 0.16

5.37, 0.08

5.54, 0.08

7.97, 0.09

2.71, 0.04

2.33, 0.04

4.57, 0.05

1.54, 0.01

1.03, 0.01

3.38, 0.01 

0.06, 0.00

PDV

7

5

6

11

10

10

5

5

5

7

6

8

2

2

3

0

8, 10

8, 10

9, 12

21, 35

21, 36

23, 40

8, 8

8, 8

9, 9

8, 7

9, 7

11, 10

4, 4

3, 3

4, 4

1, 1

45, 0

45, 0

63, 0

173, 0

177, 0

218, 0

27, 0

29, 0

30, 0

30, 0

25, 1

52, 1

22, 0

12, 0

18, 0

4, 0

  1. 1Data in each cell is organized as row 1 = Median, row 2 = Mean, Standard deviation, row 3 = Max, Min; 1MnnUnet = model trained with segments only, Mseg+spleen = Model trained with Segments and Spleen as labels, Mvess = Model trained with segments as label and vessel as color channel.
  2. 2aIntraMD = Intra-observer mean dice.
  3. 2bInterMD = Inter-observer mean dice.
  4. 3HD = Hausdorff distance (95 = 95th percentile and A = Average in mm); Wilcoxon signed rank test with Bonferroni adjustment showed p > 0.05 in MnnU-Net vs. Mseg+spleen for all. In Mseg+spleen vs. Mvess, segment 3 showed p < 0.05 in DSC and HDA. In MnnU-Net vs. Mvess, segment 3 showed p < 0.05 in HD95 and segment 4 showed p < 0.05 in PDV and HD95.