Table 1 Specific empirical coefficient correlations proposed for liquid flow through oilfield chokes.
From: Modeling liquid rate through wellhead chokes using machine learning techniques
Author | Formula | Coefficient |
|---|---|---|
Gilbert7 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.1; a2 = 1; a3 = 1.89; a4 = 0.546 |
Ros13 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.05747; a2 = 1; a3 = 2; a4 = 0.5 |
Achong9 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a = 0.26178; a2 = 1; a3 = 1.88; a4 = 0.65 |
Pilehvari11 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.021427; a2 = 1; a3 = 2.11; a4 = 0.313 |
Beiranvand et al.14 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.0382; a2 = 1; a3 = 2.275; a4 = 0.589 |
Al-Attar16 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.016266; a2 = 0.831; a3 = 1.63; a4 = 0.471 |
Mirzaei-Paiamann et al.12 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}{\gamma }_{o}^{a4 }{\gamma }_{g}^{a5}}{{GLR}^{a6}}\) | a1 = 0.052439; a2 = 1; a3 = 1.9108; a4 = 0.3988; a5 = 0.1711; a6 = 0.5220 |
Baxendell13 | \(QL=a1\frac{{P}_{wh}^{a2}{D}_{c}^{a3}}{{GLR}^{a4}}\) | a1 = 0.1046; a2 = 1; a3 = 1.93; a4 = 0.546 |