Table 6 Statistical evaluation of the developed models.

From: Modeling liquid rate through wellhead chokes using machine learning techniques

 

Adaboost-SVR

MARS

MLP-LM

MLP-BR

MLP-SCG

RBF

Training set

AAPRE %

5.3

6.58

8.7

9.24

11.51

8.11

APRE %

− 1.76

− 1.19

− 2.66

− 2.42

− 2.04

− 1.84

RMSE

661.56

469.19

682.99

747.87

917.04

672.42

SD

0.09

0.149

0.31

0.31

0.3

0.22

R2

0.9772

0.9889

0.9757

0.9707

0.9525

0.9761

Test set

AAPRE %

4.57

12.14

9.19

7.92

10.9

8.45

APRE %

− 0.47

− 4.27

− 2.08

− 0.88

− 3.13

1.76

RMSE

564.86

921.01

913.49

710.84

976.23

959.29

SD

0.1

0.31

0.14

0.13

0.19

0.14

R2

0.9827

0.9465

0.9571

0.9744

0.9477

0.9559

Total

AAPRE %

5.15

7.69

8.9

8.74

11.44

8.18

APRE %

− 1.5

− 1.81

− 2.3

− 1.99

− 1.97

− 1.12

RMSE

643.38

588.02

726.34

733.78

958.04

738.76

SD

0.086

0.19

0.29

0.28

0.28

0.2

R2

0.9784

0.9819

0.9726

0.9719

0.9522

0.9716