Table 2 The experimental results of backbone network improvement.

From: YOLOFM: an improved fire and smoke object detection algorithm based on YOLOv5n

Model

Precision (%)

Recall (%)

mAP50 (%)

mAP50-95 (%)

FPS (%)

Params (MB)

GFLOPs(G)

YOLOv5n

91.8

90.9

95.3

66.8

80.90

6.72

4.1

InceptionNeXtBlock

89.9

89.8

94.2

63.2

75.68

6.71

4.6

FasterNext

90.7

91.5

94.8

64.7

77.21

6.09

3.8

ShuffleNetV2Block

79.0

75.6

82.5

45.2

81.77

3.09

1.5

BiFormerBlock

90.5

91.4

95.1

67.4

61.73

8.05

7.5

CB2D

91.8

90.3

95.5

67.6

63.16

7.07

4.3

ELANB

88.9

88.1

93.6

61.9

76.36

5.29

3.1

ConXBv2

90.1

90.7

94.8

64.8

73.58

6.80

4.2

FocalNext

92.5

92.5

95.8

67.8

77.94

6.64

4.2