Table 3 The experimental results of neck network improvement.

From: YOLOFM: an improved fire and smoke object detection algorithm based on YOLOv5n

Model

Precision

Recall

mAP50

mAP50-95

FPS

Params (MB)

GFLOPs(G)

Conv+ nn.Upsample+ C3(YOLOv5n)

91.8

90.9

95.3

66.8

80.90

6.72

4.1

AsymptoticFPN

91.0

90.2

94.6

64.1

51.63

5.04

3.4

Conv+ Transpose + QARepNeXt

93.4

90.6

95.8

69.9

50.60

8.64

5.6

SimConv+ Transpose + QARepNeXt

92.8

91.5

95.8

69.7

54.38

8.64

5.6

GhostConv+ Transpose + QARepNeXt

92.6

91.0

95.6

69.6

49.04

8.64

5.6

SimConv + QARepVGGB+ Transpose+ QARepNeXt

91.6

92.0

95.8

68.5

65.05

8.66

5.6

GhostConv + QARepVGGB+ Transpose + QARepNeXt

92.4

92.0

95.8

69.9

57.09

8.63

5.6