Table 8 Comparison between exact and approximate buckling loads \({P}_{cr}\) (nN) for the simply supported based on nonlocal Euler–Bernoulli beam model.

From: Analyzing fine scaling quantum effects on the buckling of axially-loaded carbon nanotubes based on the density functional theory and molecular mechanics method

\(e_{0}a\) (nm)

0

1

2

\(L/d\)

\({P}_{cr}\) (exact)107

\({P}_{cr}\) (DTM)60

\({P}_{cr}\)108

\({P}_{cr}\) (exact)107

\({P}_{cr}\) (DTM)60

\({P}_{cr}\)108

\({P}_{cr}\) (exact) 107

\({P}_{cr}\) (DTM)60

\({P}_{cr}\)108

10

4.8447

4.8447

4.8447

4.4095

4.4095

4.4095

4.0460

4.0460

4.0460

12

3.3644

3.3644

3.3644

3.1486

3.1486

3.1486

2.9588

2.9588

2.9588

14

2.4718

2.4718

2.4718

2.3533

2.3533

2.3533

2.2456

2.2456

2.2456

16

1.8925

1.8925

1.8925

1.8222

1.8222

1.8222

1.7569

1.7569

1.7569

18

1.4953

1.4953

1.4953

1.4511

1.4511

1.4511

1.4094

1.4094

1.4094

20

1.2112

1.2112

1.2112

1.1821

1.1821

1.1821

1.1542

1.1542

1.1542

  1. \(e_{0}a\) shows the effects of nonlocal parameter, L is the length and d is rod diameter.