Table 1 Model results achieved on test set, n = 5 356.
From: Development of risk models of incident hypertension using machine learning on the HUNT study data
Models | AUC (↑) | Scaled brier (↑) | ICI (↓) |
|---|---|---|---|
ML | |||
XGBoost | 0.795 [0.782, 0.808] | 0.204 [0.181, 0.225] | 0.016 [0.009, 0.025] |
Elastic regression | 0.795 [0.781, 0.807] | 0.204 [0.182, 0.223] | 0.016 [0.009, 0.025] |
SVM | 0.792 [0.779, 0.804] | 0.198 [0.177, 0.217] | 0.021 [0.012, 0.030] |
KNN | 0.786 [0.772, 0.799] | 0.186 [0.169, 0.202] | 0.024 [0.015, 0.034] |
Random forest | 0.778 [0.763, 0.791] | 0.181 [0.157, 0.202] | 0.017 [0.009, 0.027] |
References | |||
Logistic regression | 0.780 [0.766, 0.792] | 0.181 [0.160, 0.201] | 0.014 [0.007, 0.022] |
High normal BP rule* | 0.656 [0.641, 0.670] | – | – |
External | |||
Framingham risk model, original | 0.786 [0.773, 0.799] | 0.078 [0.037, 0.114] | 0.115 [0.104, 0.125] |
Framingham risk model, recalibrated | 0.786 [0.773, 0.799] | 0.192 [0.170, 0.211] | 0.010 [0.005, 0.017] |