Table 4 The test results of the compare study in polypGen.
From: Dual ensemble system for polyp segmentation with submodels adaptive selection ensemble
Train/Val | (C2, C3, C4, C5, C6) 90%/10% | (C1, C2, C4, C5, C6) 90%/10% | (C1, C2, C4, C5, C6) 90%/10% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | C1 | C2 | C3 | |||||||||
Metric | Dice | mIoU | HD95 | p | Dice | mIoU | HD95 | p | Dice | mIoU | HD95 | p |
UNet | 0.737 | 0.805 | 35.62 | <Â 0.05 | 0.714 | 0.785 | 36.42 | <Â 0.05 | 0.742 | 0.812 | 34.18 | <Â 0.05 |
UperNet | 0.818 | 0.853 | 23.05 | <Â 0.05 | 0.806 | 0.832 | 28.54 | <Â 0.05 | 0.820 | 0.856 | 21.64 | <Â 0.05 |
Double-UNet | 0.672 | 0.749 | 43.23 | <Â 0.05 | 0.658 | 0.726 | 53.12 | <Â 0.05 | 0.682 | 0.762 | 39.54 | <Â 0.05 |
SS-Former | 0.837 | 0.865 | 18.39 | <Â 0.05 | 0.820 | 0.874 | 19.87 | 0.26 | 0.894 | 0.910 | 9.08 | 0.09 |
FCB-Former | 0.848 | 0.875 | 17.65 | <Â 0.05 | 0.803 | 0.862 | 23.32 | 0.08 | 0.902 | 0.916 | 9.06 | 0.20 |
ESFPNet | 0.846 | 0.873 | 17.92 | <Â 0.05 | 0.836 | 0.881 | 18.09 | 0.69 | 0.898 | 0.912 | 9.33 | 0.11 |
HarDNet-DFUS | 0.831 | 0.867 | 18.82 | <Â 0.05 | 0.813 | 0.869 | 21.67 | 0.19 | 0.852 | 0.879 | 12.61 | <Â 0.05 |
DET-Former | 0.872 | 0.894 | 12.91 | _ | 0.843 | 0.886 | 17.37 | _ | 0.912 | 0.922 | 7.63 | _ |