Table 2 Soybean yield estimation performance of the GCBA and comparing models.

From: GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data

Year

Model

Training dataset

Testing dataset

R2

RMSE

(bushels/acre)

MAE

(bushels/acre)

MAPE

(%)

R2

RMSE

(bushels/acre)

MAE

(bushels/acre)

MAPE

(%)

2019

SVR

0.6672

5.3363

3.9256

8.79

0.4675

5.6489

4.1651

8.48

RFR

0.8844

3.1936

2.2666

5.26

0.5320

5.2956

4.0861

8.71

CNN

0.8906

3.0602

2.0637

4.53

0.5840

4.9927

3.7847

7.89

GRU

0.9035

2.8733

1.9392

4.25

0.6391

4.6507

3.5475

7.31

CNN-GRU

0.9114

2.7541

1.8465

4.04

0.6633

4.4919

3.4383

7.27

GCBA

0.9203

2.6121

1.7547

3.83

0.6873

4.3288

3.2712

6.88

2020

SVR

0.6743

5.2793

3.8565

8.63

0.4082

6.3444

4.1689

8.46

RFR

0.8295

3.8202

2.6299

5.77

0.5364

5.5906

3.7262

7.65

CNN

0.8143

3.9865

2.7777

6.11

0.6152

5.0943

3.1645

6.32

GRU

0.8616

3.4415

2.3305

5.10

0.6567

4.8264

3.0281

6.08

CNN-GRU

0.9032

2.8788

1.9162

4.16

0.6671

4.7926

2.9962

5.93

GCBA

0.9255

2.5251

1.6805

3.62

0.7057

4.4612

2.8684

5.80