Table 1 Mathematical models for studying DTX release properties.
Model | Equation |
|---|---|
Non-conventional order 2 model | \(\frac{1}{{\left( {1 - F} \right)^{{{\text{n}} - 1}} }} - 1 = \left( {{\text{n}} - 1} \right){\text{k}}^{{{\text{n}} - 1}}\) (6) |
Hixon-Crowell model | \(^{3} \sqrt {{\text{W}}_{0} } =^{3} \sqrt {{\text{W}}_{i} } + {\text{K}}_{{{\text{HC}}}} {\text{t}}\) (7) |
Log-Probability model | \({\text{Z}} = {\text{Z}}_{0}^{\prime } + {\text{q}}^{\prime } \ln {\text{t}}\) (8) |
Peppas (Power Law) model | \(f_{1} = \frac{{{\text{M}} _{i} }}{{{\text{M}} \infty }} = {\text{Kt}}^{{\text{n}}}\) (9) |