Table 1 Mathematical models for studying DTX release properties.

From: Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer

Model

Equation

Non-conventional order 2 model

\(\frac{1}{{\left( {1 - F} \right)^{{{\text{n}} - 1}} }} - 1 = \left( {{\text{n}} - 1} \right){\text{k}}^{{{\text{n}} - 1}}\) (6)

Hixon-Crowell model

\(^{3} \sqrt {{\text{W}}_{0} } =^{3} \sqrt {{\text{W}}_{i} } + {\text{K}}_{{{\text{HC}}}} {\text{t}}\) (7)

Log-Probability model

\({\text{Z}} = {\text{Z}}_{0}^{\prime } + {\text{q}}^{\prime } \ln {\text{t}}\) (8)

Peppas (Power Law) model

\(f_{1} = \frac{{{\text{M}} _{i} }}{{{\text{M}} \infty }} = {\text{Kt}}^{{\text{n}}}\) (9)