Table 3 The ALC’s for Credible intervals for \(BS\left(\alpha ,\beta \right).\)

From: Birnbaum Saunders distribution for imprecise data: statistical properties, estimation methods, and real life applications

n

Credible intervals

\(BS(\alpha ,\beta )\)

\(\left(\alpha ,\beta \right)=\left(\mathrm{1.25,3}\right)\)

ACL

Prior 1

Prior 2

Prior3

\(\alpha \)

\(\beta \)

\(\alpha \)

\(\beta \)

\(\alpha \)

\(\beta \)

50

0.9457

0.9439

0.9533

0.9322

0.9385

0.9589

100

0.9411

0.9545

0.9462

0.9315

0.9471

0.9604

200

0.9560

0.9337

0.9608

0.9458

0.9594

0.9474

500

0.9522

0.9245

0.9362

0.9513

0.9549

0.9313

\(\left(\alpha ,\beta \right)=\left(\mathrm{0.5,3}\right)\)

 50

0.9406

0.9413

0.9480

0.9517

0.9443

0.9607

 100

0.9448

0.9422

0.9296

0.9505

0.9416

0.9395

 200

0.9429

0.9313

0.9281

0.9530

0.9251

0.9441

 500

0.9466

0.9486

0.9489

0.9465

0.9353

0.9521

\(\left(\alpha ,\beta \right)=\left(\mathrm{1,3}\right)\)

 50

0.9279

0.9498

0.9489

0.9378

0.9442

0.9456

 100

0.9531

0.9385

0.9372

0.9425

0.9439

0.9499

 200

0.9330

0.9340

0.9389

0.9498

0.9382

0.9372

 500

0.9423

0.9378

0.9411

0.9414

0.9513

0.9437