Table 5 Bias’s and MSE’s for Bayesian estimation for \(BS(\alpha ,\beta )\).
n | \(BS(\alpha ,\beta )\) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prior 1 | Prior 2 | Prior3 | ||||||||||
\(\alpha \) | \(\beta \) | \(\alpha \) | \(\beta \) | \(\alpha \) | \(\beta \) | |||||||
Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | |
\(\left(\alpha ,\beta \right)=\left(\mathrm{1.25,3}\right)\) | ||||||||||||
50 | 0.0119 | 0.0075 | 0.0175 | 0.0306 | 0.0144 | 0.0131 | 0.0172 | 0.0316 | 0.0076 | 0.0062 | 0.0135 | 0.0106 |
100 | 0.0096 | 0.0446 | 0.0087 | 0.0153 | 0.0080 | 0.0314 | 0.0085 | 0.0163 | 0.0036 | 0.0013 | 0.0088 | 0.0123 |
200 | 0.0032 | 0.0030 | 0.0043 | 0.0076 | 0.0042 | 0.0209 | 0.0041 | 0.0066 | 0.0015 | 0.0010 | 0.0013 | 0.0036 |
500 | 0.0058 | 0.0366 | 0.0017 | 0.0030 | 0.0014 | 0.0011 | 0.0015 | 0.0027 | 0.0021 | 0.0022 | 0.0014 | 0.0003 |
\(\left(\alpha ,\beta \right)=\left(\mathrm{0.5,3}\right)\) | ||||||||||||
50 | 0.0084 | 0.0062 | 0.0175 | 0.0306 | − 0.0008 | 0.0018 | 0.0250 | 0.0625 | − 0.0040 | 0.0064 | 0.0030 | 0.0070 |
100 | 0.0086 | 0.0221 | 0.0087 | 0.0153 | 0.0035 | 0.0013 | 0.0125 | 0.0312 | − 0.0050 | 0.0100 | 0.0050 | 0.0212 |
200 | 0.0041 | 0.0080 | 0.0043 | 0.0076 | 0.0011 | 0.0005 | 0.0062 | 0.0156 | 7.8 \(*{10}^{-7}\) | 0.0002 | 0.0033 | 0.0125 |
500 | 0.0025 | 0.0081 | 0.0017 | 0.0030 | − 0.0011 | 0.0008 | 0.0025 | 0.0006 | − 0.0013 | 0.0037 | 0.0012 | 0.0003 |
\(\left(\alpha ,\beta \right)=\left(\mathrm{1,3}\right)\) | ||||||||||||
50 | 0.0135 | 0.0109 | 0.0200 | 0.0400 | 0.0046 | 0.0094 | 0.0019 | 0.0038 | 0.0027 | 0.0073 | 0.0150 | 0.0425 |
100 | 0.0030 | 0.0007 | 0.0100 | 0.0200 | 0.0028 | 0.0010 | 0.0009 | 0.0019 | 0.0051 | 0.0049 | 0.0075 | 0.0212 |
200 | 0.0024 | 0.0012 | 0.0050 | 0.0100 | 0.0041 | 0.0034 | 0.0048 | 0.0018 | − 0.0007 | 0.0002 | 0.0038 | 0.0106 |
500 | 0.0016 | 0.0014 | 0.0020 | 0.0040 | 0.0009 | 0.0006 | 0.0018 | 0.0038 | − 0.0041 | 0.0187 | 0.0015 | 0.0043 |