Table 5 Bias’s and MSE’s for Bayesian estimation for \(BS(\alpha ,\beta )\).

From: Birnbaum Saunders distribution for imprecise data: statistical properties, estimation methods, and real life applications

n

\(BS(\alpha ,\beta )\)

Prior 1

Prior 2

Prior3

\(\alpha \)

\(\beta \)

\(\alpha \)

\(\beta \)

\(\alpha \)

\(\beta \)

Bias

MSE

Bias

MSE

Bias

MSE

Bias

MSE

Bias

MSE

Bias

MSE

\(\left(\alpha ,\beta \right)=\left(\mathrm{1.25,3}\right)\)

 50

0.0119

0.0075

0.0175

0.0306

0.0144

0.0131

0.0172

0.0316

0.0076

0.0062

0.0135

0.0106

 100

0.0096

0.0446

0.0087

0.0153

0.0080

0.0314

0.0085

0.0163

0.0036

0.0013

0.0088

0.0123

 200

0.0032

0.0030

0.0043

0.0076

0.0042

0.0209

0.0041

0.0066

0.0015

0.0010

0.0013

0.0036

 500

0.0058

0.0366

0.0017

0.0030

0.0014

0.0011

0.0015

0.0027

0.0021

0.0022

0.0014

0.0003

\(\left(\alpha ,\beta \right)=\left(\mathrm{0.5,3}\right)\)

 50

0.0084

0.0062

0.0175

0.0306

− 0.0008

0.0018

0.0250

0.0625

− 0.0040

0.0064

0.0030

0.0070

 100

0.0086

0.0221

0.0087

0.0153

0.0035

0.0013

0.0125

0.0312

− 0.0050

0.0100

0.0050

0.0212

 200

0.0041

0.0080

0.0043

0.0076

0.0011

0.0005

0.0062

0.0156

7.8 \(*{10}^{-7}\)

0.0002

0.0033

0.0125

 500

0.0025

0.0081

0.0017

0.0030

− 0.0011

0.0008

0.0025

0.0006

− 0.0013

0.0037

0.0012

0.0003

\(\left(\alpha ,\beta \right)=\left(\mathrm{1,3}\right)\)

 50

0.0135

0.0109

0.0200

0.0400

0.0046

0.0094

0.0019

0.0038

0.0027

0.0073

0.0150

0.0425

 100

0.0030

0.0007

0.0100

0.0200

0.0028

0.0010

0.0009

0.0019

0.0051

0.0049

0.0075

0.0212

 200

0.0024

0.0012

0.0050

0.0100

0.0041

0.0034

0.0048

0.0018

− 0.0007

0.0002

0.0038

0.0106

 500

0.0016

0.0014

0.0020

0.0040

0.0009

0.0006

0.0018

0.0038

− 0.0041

0.0187

0.0015

0.0043