Table 2 The degree value, the eigenvector value, and the distance between nodes.

From: Excavating important nodes in complex networks based on the heat conduction model

Node

D(vi)

EC(vi)

CC(vi)

\(R\left( {vi,vj} \right)\)

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v1

4

0.44507

0.55556

Ø

1

1

2

3

3

2

1

1

2

2

v2

3

0.29872

0.5

1

Ø

1

2

3

2

1

2

2

3

3

v3

3

0.30294

0.52632

1

1

Ø

1

2

2

2

2

2

3

3

v4

4

0.22330

0.45455

2

2

1

Ø

1

1

1

3

3

4

4

v5

1

0.06995

0.32258

3

3

2

1

Ø

2

2

4

4

5

5

v6

2

0.13435

0.34483

3

2

2

1

2

Ø

1

4

4

5

5

v7

3

0.20561

0.43478

2

1

2

1

2

1

Ø

3

3

4

4

v8

3

0.38080

0.43478

1

2

2

3

4

4

3

Ø

1

2

1

v9

4

0.43838

0.45455

1

2

2

3

4

4

3

1

Ø

1

1

v10

2

0.24139

0.33333

2

3

3

4

5

5

4

2

1

Ø

1

v11

3

0.33222

0.34483

2

3

3

4

3

5

5

1

1

1

Ø

  1. Ø indicates that there is no edge between nodes. From Table 1, the maximum degree value in the example is 4, and the maximum distance between nodes is 5.