Table 1 Detailed performance metrics of top performing models.

From: Protein feature engineering framework for AMPylation site prediction

Model

Representations

Feat types

Offsets

Nfeat

Accuracy

Precision

Recall

F1 score

AUC ROC

MCC

ANN

(‘conform’, ‘no_reduction’)

(‘mat’,)

(1, 3)

898

0.804552

0.718347

0.757692

0.734459

0.853464

0.583993

XGB

(‘no_reduction’, ‘hydro’)

(‘counts’, ‘mat’)

(1, 3)

875

0.791181

0.698694

0.736264

0.714020

0.857740

0.553493

LGBM

(‘conform’, ‘no_reduction’)

(‘counts’, ‘mat’)

(1, 2, 3)

1374

0.799075

0.745368

0.691758

0.707679

0.859776

0.565576

RF

(‘conform’, ‘no_reduction’, ‘hydro’)

(‘counts’, ‘mat’)

(1, 3)

980

0.809744

0.829522

0.606044

0.687253

0.885388

0.580302

SVM

(‘no_reduction’,)

(‘counts’, ‘mat’)

(1, 2)

820

0.788834

0.741946

0.648352

0.686790

0.863235

0.536218

Linear

(‘no_reduction’, ‘hydro’)

(‘tfeat’, ‘pro2vec’)

(3,)

360

0.756757

0.655678

0.706044

0.672372

0.808359

0.488660