Table 3 Detailed performance metrics of various models on the test split of the dataset.

From: Protein feature engineering framework for AMPylation site prediction

Model

Representations

Feat types

Offsets

Nfeat

Accuracy

Precision

Recall

F1 score

AUC ROC

MCC

ANN

(‘conform’, ‘no_reduction’)

(‘mat’)

(1, 3)

898

0.815789

0.724138

0.777778

0.750000

0.900605

0.605428

SVM

(‘no_reduction’)

(‘counts’, ‘mat’)

(1, 2)

820

0.802632

0.772727

0.629630

0.693878

0.913076

0.556759

XGB

(‘hydro’, ‘no_reduction’)

(‘counts’, ‘mat’)

(1, 3)

875

0.776316

0.678571

0.703704

0.690909

0.867725

0.515952

LGBM

(‘conform’, ‘no_reduction’)

(‘mat’)

(1, 2, 3)

1347

0.750000

0.642857

0.666667

0.654545

0.879819

0.458957

RF

(‘conform’, ‘no_reduction’, ‘hydro’)

(‘counts’, ‘mat’)

(1, 3)

980

0.789474

0.823529

0.518519

0.636364

0.908541

0.525200