Table 3 The topological characteristics of different networks, where the naming convention for LFR synthetic networks follows the pattern LFR_N_\(\mu\), where N represents the number of nodes in the network, \(\mu\) represents the parameter controlling the strength of community structure in the synthetic network; m indicates the number of edges in the network; \(k_{max}\) denotes the maximum degree in the network, \(\mathrm {<}k\mathrm {>}\) represents the average degree of the network, \(\mathrm {<C>}\) signifies the average clustering coefficient of the network43, r represents the degree assortativity of the network44; M denotes the modularity size of the network38, and the community detection algorithm used in this paper is the Louvain algorithm19,45; \(\beta _{th}\) represents the disease propagation threshold of the network under the SIR model, calculated using the formula46 \(\frac{<k>}{<k^2> <k>}\).

From: Identifying influential nodes based on the disassortativity and community structure of complex network

Networks

\(\mu\)

N

m

\(k_{max}\)

\(\mathrm {<}k\mathrm {>}\)

\(\mathrm {<}C\mathrm {>}\)

r

M

\(\beta _{th}\)

LFR500_0.1

0.1

500

2658

75

10.632

0.22

− 0.057

0.72

0.077

LFR500_0.8

0.8

500

2693

69

11.424

0.038

− 0.103

0.27

0.067

LFR1000_0.1

0.1

1000

2856

117

10.9

0.27

− 0.036

0.76

0.063

LFR1000_0.8

0.8

1000

5450

106

11.842

0.023

− 0.099

0.25

0.059

LFR5000_0.1

0.1

5000

28350

150

11.34

0.22

− 0.053

0.81

0.059

LFR5000_0.8

0.8

5000

28697

179

11.479

0.005

− 0.079

0.24

0.058

Email

1133

5451

71

9.622

0.22

0.078

0.56

0.054

PGP

10680

24316

205

4.554

0.27

0.238

0.88

0.056

Power

4941

6594

19

2.669

0.08

0.004

0.94

0.258

interactome_figeys

2239

6432

314

5.74

0.04

-0.330

0.47

0.018

collins_yeast

1622

9070

127

11.18

0.55

0.610

0.79

0.03

Webkb

348

16625

229

95.54

0.80

0.410

0.22

0.01

NS

1461

2742

34

3.76

0.69

0.46

0.96

0.17

new_zealand_collab

1511

4273

551

5.66

0.51

-0.33

0.46

0.01